版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古自治区平煤高级中学、元宝山一中高一下数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为中的三边长,且,则的取值范围是()A. B.C. D.2.数列中,对于任意,恒有,若,则等于()A. B. C. D.3.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-114.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.5.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.6.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.17.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.已知是第二象限角,且,则的值为A. B. C. D.9.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.函数的定义域是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边经过点,则___________.12.已知数列的通项公式为,的前项和为,则___________.13.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.14.___________.15.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.16.如图,在边长为的菱形中,,为中点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知对任意,恒成立(其中),求的最大值.18.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.19.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.20.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.21.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度为,行车道总宽度为,侧墙面高,为,弧顶高为.()建立适当的直角坐标系,求圆弧所在的圆的方程.()为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.2、D【解析】因为,所以
,
.选D.3、D【解析】
分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【点睛】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.4、A【解析】
当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【点睛】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.5、C【解析】
在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.6、B【解析】
直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.7、D【解析】
根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【点睛】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.8、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.9、C【解析】
由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.10、A【解析】
利用复合函数求定义域的方法求出函数的定义域.【详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【点睛】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【详解】由任意角三角函数的定义可得:.则故答案为3【点睛】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.12、【解析】
计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.13、2【解析】
根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【详解】由题意,可得,即,解得.【点睛】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.15、【解析】
由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.16、【解析】
选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、的最大值为.【解析】试题分析:利用二倍角公式,利用换元法,将原不等式转化为二次不等式在区间上恒成立,利用二次函数的零点分布进行讨论,从而得出的最大值,但是在对时的情况下,主要对二次函数的对称轴是否在区间进行分类讨论,再将问题转化为的条件下,求的最大值,试题解析:由题意知,令,,则当,恒成立,开口向上,①当时,,不满足,恒成立,②当时,则必有(1)当对称轴时,即,也即时,有,则,,则,当,时,.当对称轴时,即,也即时,则必有,即,又由(1)知,则由于,故只需成立即可,问题转化为的条件下,求的最大值,然后利用代数式的结构特点或从题干中的式子出发,分别利用三角换元法、导数法以及柯西不等式法来求的最大值.法一:(三角换元)把条件配方得:,,所以,;法二:(导数)令则即求函数的导数,椭圆的上半部分;法三:(柯西不等式)由柯西不等式可知:,当且仅当,即及时等号成立.即当时,最大值为2.综上可知.考点:1.二倍角;2.换元法;3.二次不等式的恒成立问题;4.导数;5.柯西不等式18、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.19、(1);(2);【解析】
(1)根据已知求得的斜率,由点斜式求出直线的方程.(2)根据已知求得的斜率,由点斜式写出直线的方程,联立的方程,求得两条直线交点的坐标,再由三角形面积公式求得三角形面积.【详解】解:(1)∵∥,∴直线的斜率是又直线过点,∴直线的方程为,即(2)∵,∴直线的斜率是又直线过点,∴直线的方程为即由得与的交点为∴直线,,轴围成的三角形的面积是【点睛】本小题主要考查两条直线平行、垂直时,斜率的对应关系,考查直线的点斜式方程,考查两条直线交点坐标的求法,考查三角形的面积公式,属于基础题.20、(1);(2)最大值为,最小值为.【解析】
(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【点睛】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦函数的基本性质进行求解,考查分析问题和解决问题的能力,属于中等题.21、(1);(2)3.5【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业翻译服务合同模板版
- 2024年人工智能研发与产业化基地施工合同
- 2024年度乙方独家代理甲方业务协议
- 2024年企业全权代理协议授权委托协议版B版
- 2024年国内钢板供应商采购协议版
- 2024区域销售代理合作合同
- 佳木斯大学《中药学概论》2021-2022学年第一学期期末试卷
- 2025教师年终总结政治思想教育教学班级管理模板
- 二零二四年度城市供水管网建设项目合作协议2篇
- 2024供应商业务往来信息保密协议版B版
- 《探索与表达规律》教学设计
- 直线点斜式方程说课 完整版课件
- 新教材人教版高中数学必修第一册 第四章单元测试卷(原卷版)
- 历史事物-历史概念-历史评价-关于历史学科核心素养的讨论
- 幼儿如厕睡眠行为的观察记录与分析
- 内镜室设置及管理
- 一年级上册口语交际《小兔运南瓜》
- 产后康复基础知识PPT通用课件
- 主动脉内球囊反搏泵(IABP)详解
- (完整版)食堂检查表
- GB14881—2013食品生产通用卫生规范
评论
0/150
提交评论