版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省凉山州会东中学2023-2024学年数学高一下期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.当时,不等式恒成立,则实数m的取值范围是()A. B. C. D.2.在中,,则这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形3.已知,则=()A. B. C. D.4.若cosθ>0,且sin2θ<0,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限5.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.6.已知,向量,则向量()A. B. C. D.7.已知是定义在上不恒为的函数,且对任意,有成立,,令,则有()A.为等差数列 B.为等比数列C.为等差数列 D.为等比数列8.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.59.的内角的对边分别为,若,则()A. B. C. D.10.若,则的最小值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设扇形的半径长为,面积为,则扇形的圆心角的弧度数是12.若为的最小内角,则函数的值域为_____.13.数列满足,则的前60项和为_____.14.函数的值域是______.15.已知正数、满足,则的最小值是________.16.己知是等差数列,是其前项和,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).18.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.19.已知圆经过点.(1)若直线与圆相切,求的值;(2)若圆与圆无公共点,求的取值范围.20.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.21.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x)min,利用基本不等式可求得(x)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x恒成立⇔m<(x)min,当x>0时,x26(当且仅当x=3时取“=”),因此(x)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.2、B【解析】解:3、C【解析】由得:,所以,故选D.4、D【解析】试题分析:且,,为第四象限角.故D正确.考点:象限角.5、B【解析】
设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.6、A【解析】
由向量减法法则计算.【详解】.故选A.【点睛】本题考查向量的减法法则,属于基础题.7、C【解析】令,得到得到,.,说明为等差数列,故C正确,根据选项,排除A,D.∵.显然既不是等差也不是等比数列.故选C.8、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.9、B【解析】
首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.10、A【解析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】试题分析:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2考点:扇形面积公式.12、【解析】
依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【点睛】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.13、1830【解析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.14、【解析】
将函数化为的形式,再计算值域。【详解】因为所以【点睛】本题考查三角函数的值域,属于基础题。15、.【解析】
利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【点睛】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.16、-1【解析】
由等差数列的结合,代入计算即可.【详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【点睛】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想18、(1)(2)【解析】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴19、(1)或.(2)【解析】试题分析:由题意可得圆的方程为.(1)由圆心到直线的距离等于半径可得,解得或,即为所求.(2)由圆与圆无公共点可得两圆内含或外离,根据圆心距和两半径的关系得到不等式即可得到所求范围.试题解析:将点的坐标代入,可得,所以圆的方程为,即,故圆心为,半径.(1)因为直线与圆相切,所以圆心到直线的距离等于圆的半径,即,整理得,解得或.(2)圆的圆心为,则,由题意可得圆与圆内含或外离,所以或,解得或.所以的取值范围为.20、(1),;(2)【解析】
(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024苏州二手房买卖合同协议范本:房屋交易保障及售后服务协议3篇
- 2025年度厂区绿化养护与生态景观提升合同3篇
- 2025年度360借条合同多(信用评级合作版)3篇
- 2025年度油气田废弃井修复打井合同范本4篇
- 2025年度文化创意产业出资协议合同模板3篇
- 2024美团外卖配送配送员配送区域合作伙伴服务标准合同3篇
- 2024网络安全风险评估及防护服务合同
- 2025年度图书档案库房智能化储藏系统合同4篇
- 2025年度智能车场租赁服务合同(新能源汽车版)4篇
- 2025年度电磁兼容性实验室设备采购合同2篇
- 《C语言从入门到精通》培训教程课件
- 2023年中国半导体行业薪酬及股权激励白皮书
- 2024年Minitab全面培训教程
- 社区电动车棚新(扩)建及修建充电车棚施工方案(纯方案-)
- 项目推进与成果交付情况总结与评估
- 铁路项目征地拆迁工作体会课件
- 医院死亡报告年终分析报告
- 建设用地报批服务投标方案(技术方案)
- 工会工作人年度考核个人总结
- 上海民办杨浦实验学校初一新生分班(摸底)语文考试模拟试卷(10套试卷带答案解析)
- 机器人论文3000字范文
评论
0/150
提交评论