版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2024中考数学一轮复习备战2024中考数学一轮复习第2讲图形的对称、平移、旋转与位似(含图形的运动与坐标)№考向解读第2讲图形的对称、平移、旋转与位似(含图形的运动与坐标)№考向解读➊考点精析➋真题精讲➌题型突破➍专题精练第七章图形的变换第2讲图形的对称、平移、旋转与位似(含图形的运动与坐标)该板块知识以考查平面几何的三大变换的基本运用为主.年年都有考查,分值在8-10分左右。预计2024年各地中考还将继续考查这些知识点,考查形式主要有选填题、作图题、也可能综合题结合出现。这三大变换贯穿于初中所学的平面几何之中,利用平移、旋转、对称能解决三角形、四边形、圆、二次函数、反比例函数的性质等问题,利用变换在解决问题时往往能起到化繁为简的功效,激活思维,让人茅塞顿开.→➊考点精析←→➋真题精讲←考向一平移考向二对称考向三旋转考向四位似第2讲图形的对称、平移、旋转与位似(含图形的运动与坐标)→➊考点精析←一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.五、位似图形1.定义:如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.2.性质:1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或–k;2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.3.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.4.画位似图形的步骤:1)确定位似中心;2)确定原图形的关键点;3)确定位似比,即要将图形放大或缩小的倍数;4)作出原图形中各关键点的对应点;5)按原图形的连接顺序连接所作的各个对应点.→➋真题精讲←考向一平移1.(2023·四川南充·统考中考真题)如图,将沿向右平移得到,若,,则的长是(
)
A.2 B. C.3 D.52.(2023·内蒙古赤峰·统考中考真题)如图,在中,,,.点F是中点,连接,把线段沿射线方向平移到,点D在上.则线段在平移过程中扫过区域形成的四边形的周长和面积分别是(
)
A.16,6 B.18,18 C.16.12 D.12,16考向二对称3.(2023·山东聊城·统考中考真题)如图,在直角坐标系中,各点坐标分别为,,.先作关于x轴成轴对称的,再把平移后得到.若,则点坐标为(
)
A. B. C. D.4.(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点均为格点(网格线的交点).
(1)画出线段关于直线对称的线段;(2)将线段向左平移2个单位长度,再向上平移1个单位长度,得到线段,画出线段;(3)描出线段上的点及直线上的点,使得直线垂直平分.5.(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).
考向三旋转6.(2023·山东枣庄·统考中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为,将银杏叶绕原点顺时针旋转后,叶柄上点A对应点的坐标为___________.
7.(2023·江苏无锡·统考中考真题)如图,中,,将逆时针旋转得到,交于F.当时,点D恰好落在上,此时等于(
)
A. B. C. D.8.(2023·四川宜宾·统考中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:①;②;③当点在的延长线上时,;④在旋转过程中,当线段最短时,的面积为.其中正确结论有()
A.1个 B.2个 C.3个 D.4个9.(2023·江苏连云港·统考中考真题)以正五边形的顶点C为旋转中心,按顺时针方向旋转,使得新五边形的顶点落在直线上,则正五边旋转的度数至少为______°.10.(2023·湖南张家界·统考中考真题)如图,为的平分线,且,将四边形绕点逆时针方向旋转后,得到四边形,且,则四边形旋转的角度是______.
11.(2023·江西·统考中考真题)如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.
12.(2023·湖南郴州·统考中考真题)如图,在中,,,.将绕点逆时针旋转,得到,若点的对应点恰好落在线段上,则点的运动路径长是___________cm(结果用含的式子表示).
13.(2023·北京·统考中考真题)在中、,于点M,D是线段上的动点(不与点M,C重合),将线段绕点D顺时针旋转得到线段.
(1)如图1,当点E在线段上时,求证:D是的中点;(2)如图2,若在线段上存在点F(不与点B,M重合)满足,连接,,直接写出的大小,并证明.考向四位似14.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点成位似关系,则位似中心的坐标为(
)
A. B. C. D.15.(2023·浙江嘉兴·统考中考真题)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年木材托盘经销协议模板
- 2024年度高效汽车运送协议范本
- 2024餐饮业操作人员劳动协议范例
- 2024项目协作委托详细协议模板大全
- 不动产过户协议样本 2024 年规范
- 跨境电商网店设计趋势
- 2024年家具定制协议范本综合指南
- 创新型企业知识产权保护服务协议范例
- 2024年度学生宿舍租赁协议样本
- 太阳课件模板教学课件
- TCECA-G 0304-2024 数字化碳管理平台 总体框架
- 风力发电项目施工方案
- 2024-2030年云网融合行业市场发展分析及发展趋势与投资前景研究报告
- TSDPIA 03-2023 宠物猫砂生产质量安全管理规范
- 2025届高考写作指导:二元思辨类作文指导
- 河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)
- 3.1DNA是主要的遗传物质课件高一下学期生物人教版必修22
- 前程无忧行测题库及答案大全
- 2024年重庆市中考数学真题试卷及答案解析(b卷)
- 2023年学位英语真题及答案
- 关爱失智失能老年人(失智失能老人健康照护课件)
评论
0/150
提交评论