版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市迪荡新区重点中学2022年中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是()A. B.C. D.2.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC3.tan45º的值为()A. B.1 C. D.4.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.5.估计的值在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间6.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.67.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20188.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.9.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.310.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)11.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<012.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20° D.15°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程的解是__________.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.B.比较__________的大小.15.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.16.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是。17.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.18.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).①AC=2BC②△BCD为正三角形③AD=BD三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.20.(6分)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.21.(6分)(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式组:,并把它的解集在数轴上表示出来.22.(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.23.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.24.(10分)某初中学校组织400位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是,正确的数据应该是;(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?25.(10分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.a1a2a3a4a5a6c1c2c3c4…到达窗口时刻000000161116…服务开始时刻024681012141618…每人服务时长2222222222…服务结束时刻2468101214161820…根据上述表格,则第位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.分析:第n个“新顾客”到达窗口时刻为,第(n﹣1)个“新顾客”服务结束的时刻为.26.(12分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.27.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.2、D【解析】
由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正确;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正确;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D.【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.3、B【解析】
解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.4、D【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.5、C【解析】∵,∴.即的值在6和7之间.故选C.6、B【解析】∵=﹣8,﹣8的相反数是8,∴的相反数是8,故选B.7、A【解析】
因为两个数相乘之积为1,则这两个数互为倒数,如果m的倒数是﹣1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是﹣1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.8、C【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形9、D【解析】
根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;故答案选D.考点:反比例系数的几何意义.10、A【解析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.11、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.12、B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x=1【解析】
将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本题答案为:x=1.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.14、5>【解析】
A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.【详解】A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【点睛】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.15、k>-且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.16、30°【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵△AOB是正三角形∴∠AOB=60°∴∠ACB=30°.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.17、【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).18、②③【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.【详解】由题意可知:∠A=30°,∴AB=2BC,故①错误;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等边三角形,故②正确;∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.故答案为②③.【点睛】本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】
(1)令y=0,得到关于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴解得:∴AC解析式为y=x+4.设P(t,﹣t2﹣t+4)则D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.20、(1)=4;(2)=n.【解析】
试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n.证明如下:∵===n∴第n个等式是:=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.21、(1)-3;(2).【解析】分析:(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.22、(1),(2)【解析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种,∴两人获胜的概率都是.(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,∴两局游戏能确定赢家的概率为:.(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.23、△A′DE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.24、(1)9;(2)11,12;(3)3360棵【解析】
(1)30位同学的植树量中第15个、16个数都是9,即可得到植树的中位数;(2)根据频率相加得1确定频率正确,计算频数即可确定错误的数据是11,正确的硬是12;(3)样本数据应体现机会均等由此得到乙同学所抽取的样本更好,再根据部分计算总体的公式即可得到答案.【详解】(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)表2的最后两列中,错误的数据是11,正确的数据应该是30×0.4=12;故答案为:11,12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活动400位同学一共植树3360棵.【点睛】此题考查统计的计算,掌握中位数的计算方法,部分的频数的计算方法,依据样本计算总体的方法是解题的关键.25、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居间合同2025年度版:定义、属性与服务质量评估体系3篇
- 二零二五年度能源项目权益转让与投资合同3篇
- 二零二五年软件开发服务合同4篇
- 二零二五版智能LED户外广告平台合作项目合同3篇
- 影视器材租赁与技术服务2025年度合同3篇
- 二零二五年度房地产开发项目造价咨询合同6篇
- 二零二五版搬家运输合同:搬家运输途中物品丢失赔偿3篇
- 二零二五版海鲜加盟店日常运营管理与维护服务合同范本2篇
- 二零二五年度车辆转让附带绿色出行奖励政策合同3篇
- 二零二五年度智能办公桌椅研发合作合同2篇
- 艺术课程标准(2022年版)
- 一年级语文雨点儿-教学课件【希沃白板初阶培训结营大作业】
- 替格瑞洛药物作用机制、不良反应机制、与氯吡格雷区别和合理使用
- 河北省大学生调研河北社会调查活动项目申请书
- GB/T 20920-2007电子水平仪
- 如何提高教师的课程领导力
- 企业人员组织结构图
- 日本疾病诊断分组(DPC)定额支付方式课件
- 实习证明模板免费下载【8篇】
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- 案件受理登记表模版
评论
0/150
提交评论