版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学教案(8篇)高二数学教案篇一一、教学目标1.知识与技能(1)理解流程图的顺序结构和选择结构。(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图2.过程与方法学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。3情感、态度与价值观学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。二、教学重点、难点重点:算法的顺序结构与选择结构。难点:用含有选择结构的流程图表示算法。三、学法与教学用具学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。教学用具:尺规作图工具,多媒体。四、教学思路(一)、问题引入揭示课题例1尺规作图,确定线段的一个5等分点。要求:同桌一人作图,一人写算法,并请学生说出答案。提问:用文字语言写出算法有何感受?引导学生体验到:显得冗长,不方便、不简洁。教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。本节要学习的是顺序结构与选择结构。右图即是同流程图表示的算法。(二)、观察类比理解课题1、投影介绍流程图的符号、名称及功能说明。符号符号名称功能说明终端框算法开始与结束处理框算法的各种处理操作判断框算法的各种转移输入输出框输入输出操作指向线指向另一操作2、讲授顺序结构及选择结构的概念及流程图(1)顺序结构依照步骤依次执行的一个算法流程图:(2)选择结构对条件进行判断来决定后面的步骤的结构流程图:3.用自然语言表示算法与用流程图表示算法的比较(1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。解:算法(自然语言)①把10赋与r②用公式求s③输出s流程图(2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。算法:(语言表示)①输入X值②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值③输出Y的值流程图小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)(三)模仿操作经历课题1.用流程图表示确定线段A.B的一个16等分点2.分析讲解例2;分析:思考:有多少个选择结构?相应的流程图应如何表示?流程图:(四)归纳小结巩固课题1.顺序结构和选择结构的模式是怎样的?2.怎样用流程图表示算法。(五)练习P992(六)作业P991高二数学教案篇二简单的逻辑联结词(一)教学目标1.知识与技能目标:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。(二)教学重点与难点重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。难点:1、正确理解命题Pq真假的规定和判定。2、简洁、准确地表述命题Pq.教具准备:与教材内容相关的资料。教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的'培养。(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。3、归纳定义一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。命题pq即命题p且q中的且字与下面命题中的且字的含义相同吗?若xA且xB,则xB。定义中的且字与命题中的且字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。4、命题pq的真假的规定你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。一般地,我们规定:当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。5、例题例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数。解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。由于p是真命题,且q也是真命题,所以pq是真命题。(2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。也可简写成菱形的对角线互相垂直且平分。由于p是真命题,且q也是真命题,所以pq是真命题。(3)pq:35是15的倍数且35是7的倍数。也可简写成35是15的倍数且是7的倍数。由于p是假命题,q是真命题,所以pq是假命题。说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。例2:用逻辑联结词且改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2是素数且3是素数;6.巩固练习:P20练习第1,2题7.教学反思:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题高二数学教案篇三简单的逻辑联结词(一)教学目标1、知识与技能目标:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题(3)掌握真值表并会应用真值表解决问题2、过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。3、情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。(二)教学重点与难点重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。难点:1、正确理解命题Pq真假的规定和判定。2、简洁、准确地表述命题Pq.教具准备:与教材内容相关的资料。教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。3、归纳定义一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。命题pq即命题p且q中的且字与下面命题中的且字的含义相同吗?若xA且xB,则xB。定义中的且字与命题中的且字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。4、命题pq的真假的规定你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。一般地,我们规定:当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。5、例题例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数。解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。由于p是真命题,且q也是真命题,所以pq是真命题。(2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。也可简写成菱形的对角线互相垂直且平分。由于p是真命题,且q也是真命题,所以pq是真命题。(3)pq:35是15的倍数且35是7的倍数。也可简写成35是15的倍数且是7的倍数。由于p是假命题,q是真命题,所以pq是假命题。说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。例2:用逻辑联结词且改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2是素数且3是素数;6.巩固练习:P20练习第1,2题7.教学反思:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题高二数学教案篇四一、教材分析【教材地位及作用】基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。【教学目标】依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。【教学重难点】重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。难点:利用基本不等式推导不等式。关键是对基本不等式的理解掌握。二、教法分析本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。三、学法指导新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。四、教学过程教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。具体过程安排如下:(一)基本不等式的教学设计创设情景,提出问题设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。[问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)(二)探究问题,抽象归纳基本不等式的教学设计1.探究图形中的不等关系形的角度(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积。)数的角度[问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?学生讨论结果:。[问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)咱们再看一看图形的变化,(教师演示)(学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即。探索结论:我们得到不等式,当且仅当时等号成立。设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。2.抽象归纳:一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。[问题4]你能给出它的证明吗?学生在黑板上板书。[问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?学生归纳得出。设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。【归纳总结】如果a,b都是非负数,那么,当且仅当a=b时,等号成立。我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。3.探究基本不等式证明方法:[问题6]如何证明基本不等式?设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。方法一:作差比较或由基本不等式的教学设计展开证明。方法二:分析法要证只要证2要证,只要证2要证,只要证显然,是成立的。当且仅当a=b时,中的等号成立。4.理解升华1)文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。2)符号语言叙述:若,则有,当且仅当a=b时,。[问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)“当且仅当a=b时,等号成立”的含义是:当a=b时,取等号,即;仅当a=b时,取等号,即。3)探究基本不等式的几何意义:基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,[问题8]你能利用这个图形得出基本不等式的几何解释吗?(教师演示,学生直观感觉)易证RtACDRtDCB,那么CD2=CA·CB即CD=.这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立。因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。4)联想数列的知识理解基本不等式从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系。[问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?归纳得出:均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项。基本不等式的教学设计(四)体会新知,迁移应用例1:(1)设均为正数,证明不等式:基本不等式的教学设计(2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。(五)演练反馈,巩固深化公式应用之一:1.试判断与与2的大小关系?问题:如果将条件“x>0”去掉,上述结论是否仍然成立?2.试判断与7的大小关系?公式应用之二:设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中(1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了。你觉得这种做法比实际重量轻了还是重了?(2)甲、乙两商场对单价相同的同类产品进行促销。甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折。对顾客而言,哪种打折方式更合算?(0≠q)(五)反思总结,整合新知:通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平。从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点老师根据情况完善如下:知识要点:(1)重要不等式和基本不等式的条件及结构特征(2)基本不等式在几何、代数及实际应用三方面的意义思想方法技巧:(1)数形结合思想、“整体与局部”(2)归纳与类比思想(3)换元法、比较法、分析法(七)布置作业,更上一层1.阅读作业:预习基本不等式的教学设计2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。五、评价分析1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。六、板书设计§3.3基本不等式一、重要不等式二、基本不等式1.文字语言叙述2.符号语言叙述3.几何意义4.代数解释三、应用举例例1.四、演练反馈五、总结归纳1.知识要点2.思想方法高二年级数学教案篇五教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件。教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程复习引入:课堂小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后作业P107习题2.4A组2、7题课后小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高二数学教案篇六一、课前准备:【自主梳理】1、对数:(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.(2)以10为底的对数记为________,以为底的对数记为_______.(3),。2、对数的运算性质:(1)如果,那么,。(2)对数的换底公式:。3、对数函数:一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.4、对数函数的图像与性质:a10图象性质定义域:___________值域:_____________过点(1,0),即当x=1时,y=0x(0,1)时_________x(1,+)时________x(0,1)时_________x(1,+)时________在___________上是增函数在__________上是减函数【自我检测】1、的定义域为_________.2、化简:。3、不等式的解集为________________.4、利用对数的换底公式计算:。5、函数的奇偶性是____________.6、对于任意的,若函数,则与的大小关系是___________________________.二、课堂活动:【例1】填空题:(1)。(2)比较与的大小为___________.(3)如果函数,那么的最大值是_____________.(4)函数的奇偶性是___________.【例2】求函数的定义域和值域。【例3】已知函数满足。(1)求的解析式;(2)判断的奇偶性;(3)解不等式。课堂小结三、课后作业1、。略2、函数的定义域为_______________.3、函数的值域是_____________.4、若,则的取值范围是_____________.5、设则的大小关系是_____________.6、设函数,若,则的取值范围为_________________.7、当时,不等式恒成立,则的取值范围为______________.8、函数在区间上的值域为,则的最小值为____________.9、已知。(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求使的的取值范围。10、对于函数,回答下列问题:(1)若的定义域为,求实数的取值范围;(2)若的值域为,求实数的取值范围;(3)若函数在内有意义,求实数的取值范围。四、纠错分析错题卡题号错题原因分析高二数学教案:对数与对数函数一、课前准备:【自主梳理】1、对数(1)以为底的的对数,,底数,真数。(2),。(3)0,1.2、对数的运算性质(1),,。(2)。3、对数函数,。4、对数函数的图像与性质a10图象性质定义域:(0,+)值域:R过点(1,0),即当x=1时,y=0x(0,1)时y0x(1,+)时y0x(0,1)时y0x(1,+)时y0在(0,+)上是增函数在(0,+)上是减函数【自我检测】1、2.3.4、5.奇函数6.。二、课堂活动:【例1】填空题:(1)3.(2)。(3)0.(4)奇函数。【例2】解:由得。所以函数的定义域是(0,1)。因为,所以,当时,,函数的值域为;当时,,函数的值域为。【例3】解:(1),所以。(2)定义域(-3,3)关于原点对称,所以,所以为奇函数。(3),所以当时,解得当时,解得。高二数学教案篇七教学准备教学目标1、知识与技能:(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣;(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。2、过程与方法:通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度租客房屋意外事故免责声明与房东无关合同
- 绿化亮化施工方案
- 码头回填施工方案
- 智能交通系统优化-第22篇-深度研究
- 国内外勘查技术对比-深度研究
- 基于深度学习的空间语义分析-深度研究
- 智能纺织材料开发与应用-深度研究
- 农业物联网设备集成-深度研究
- 学生教育资源均衡化配置研究-深度研究
- 光老化与皮肤防护-深度研究
- 消防产品目录(2025年修订本)
- 地方性分异规律下的植被演替课件高三地理二轮专题复习
- 光伏项目风险控制与安全方案
- 9.2提高防护能力教学设计 2024-2025学年统编版道德与法治七年级上册
- 催收培训制度
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理体系 审核与认证机构要求》中文版(机翻)
- 五四制青岛版数学五年级上册期末测试题及答案(共3套)
- 商法题库(含答案)
- 钢结构用高强度大六角头螺栓连接副 编制说明
- 沟通与谈判PPT完整全套教学课件
- 移动商务内容运营(吴洪贵)项目四 移动商务运营内容的传播
评论
0/150
提交评论