版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市第五中学2022年中考数学适应性模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于()A. B. C. D.2.下列生态环保标志中,是中心对称图形的是()A.B.C.D.3.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,244.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若,,则的度数是A. B. C. D.5.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10106.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm27.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A. B. C. D.8.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是()A.﹣4 B.﹣2 C.1 D.29.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.12.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.13.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.14.因式分解:3x2-6xy+3y2=______.15.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.16.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。三、解答题(共8题,共72分)17.(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.18.(8分)2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“3科”课外辅导的有人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.19.(8分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.20.(8分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)21.(8分)如图,已知一次函数y=kx+b的图象与反比例函数y=8(1)求一次函数的解析式;(2)求ΔAOB的面积。22.(10分)如图,在中,以为直径的⊙交于点,过点作于点,且.()判断与⊙的位置关系并说明理由;()若,,求⊙的半径.23.(12分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.24.如图,一次函数的图象与反比例函数的图象交于,B
两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.2、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.3、A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4、A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.5、B【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D【解析】
标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,设BF=3a,则EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片的面积之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故选D.【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.7、B【解析】
根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.8、B【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.【详解】解方程组,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故选B.【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.9、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状10、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】
根据题意作出图形即可得出答案,【详解】如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.12、【解析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG与Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(设为x),∠FEG=∠CEG;同理可证:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5•x,∴x=,∴CG=,故答案为:.【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.13、k>-且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.14、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用15、【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B作BD⊥AC于D,设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根据勾股定理得,AC==x,S△ABC=BC•AH=AC•BD,即•2x•2x=•x•BD,解得BC=x,所以,sin∠BAC=.故答案为.16、500【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.三、解答题(共8题,共72分)17、(1)见解析;(2)AF∥CE,见解析.【解析】
(1)直接利用全等三角三角形判定与性质进而得出△FOC≌△EOA(ASA),进而得出答案;(2)利用平行四边形的判定与性质进而得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,点O是对角线AC、BD的交点,∴AO=CO,DC∥AB,DC=AB,∴∠FCA=∠CAB,在△FOC和△EOA中,∴△FOC≌△EOA(ASA),∴FC=AE,∴DC-FC=AB-AE,即DF=EB;(2)AF∥CE,理由:∵FC=AE,FC∥AE,∴四边形AECF是平行四边形,∴AF∥CE.【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC≌△EOA(ASA)是解题关键.18、(1)50,10;(2)见解析.(3)16.8万【解析】
(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24×=16.8(万).【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×=16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.19、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得点A的坐标,再求得点B的坐标,用h表示出点D的坐标后代入直线的解析式即可验证答案。(2)①根据两种不同的表示形式得到m和h之间的函数关系即可。②点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F,证得△ACE~△CDF,然后用m表示出点C和点D的坐标,根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是两个抛物线的交点,∴点C的纵坐标可以表示为:(a﹣1)2+1或(a﹣n)2﹣n+2由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。20、52【解析】
根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.21、(1)y=x+2;(2)6.【解析】
(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.【详解】(1)当x=2时,y=当y=-2时,-2=8x所以点A(2,4),点B(-4,-2),将A,B两点分别代入一次函数解析式,得2k+b=4-4k+b=-2解得:k=1b=2所以,一次函数解析式为y=(2)令直线AB与y轴交点为D,则OD=b=2,SΔAOB【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.22、(1)DE与⊙O相切,详见解析;(2)5【解析】
(1)根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE=90°,说明相切的位置关系。(2)根据直径所对的圆心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推导出∠DAB=∠C,可判定△ABC是等腰三角形,再根据BD⊥AC可知D是AC的中点,从而得出AD的长度,再在Rt△ADB中计算出直径AB的长,从而算出半径。【详解】(1)连接OD,在⊙O中,因为AB是直径,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因为∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD过圆心,D是圆上一点,故DE是⊙O切线上的一段,因此位置关系是直线DE与⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,则∠BDE+∠ABD=90°,因为DE⊥BC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年二手住房贷款合同2篇
- 2024年度建筑工程品质保障合同书版B版
- 2024版债权转让与债务豁免合同3篇
- 2024年建筑施工环境保护协议2篇
- 2024版虚拟现实游戏内容开发与授权使用合同3篇
- 住房公积金贷款合同三篇
- 平面设计服务合同三篇
- 2024年农药及肥料批发协议格式一
- 2024版环保技术与设备采购合同3篇
- 2024年二手车交易协议样本
- 公务员考试经验分享培训课件
- 红河学院《运动营养学》2022-2023学年第一学期期末试卷
- 新概念英语第二册单词表(含音标)
- 住建局条文解读新规JGJT46-2024《施工现场临时用电安全技术标准》
- 科教融汇背景下铁道车辆技术专业群课程改与革实践
- 2024安全员知识考试题(全优)
- 2024年3D打印加工合作合同
- 国家开放大学《当代中国政治制度》期末复习题
- 中学生标准学术能力诊断性测试2024-2025学年高三上学期10月月考试题 英语 含答案
- 北京市海淀区2023-2024学年五年级上学期数学期末试卷
- 走近大诗人学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论