2024届福建省长汀县 新桥中学高一数学第二学期期末质量检测试题含解析_第1页
2024届福建省长汀县 新桥中学高一数学第二学期期末质量检测试题含解析_第2页
2024届福建省长汀县 新桥中学高一数学第二学期期末质量检测试题含解析_第3页
2024届福建省长汀县 新桥中学高一数学第二学期期末质量检测试题含解析_第4页
2024届福建省长汀县 新桥中学高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省长汀县新桥中学高一数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若,则的值是().A.-1 B.1 C.2 D.-22.一个三棱锥内接于球,且,,则球心到平面的距离是()A. B. C. D.3.已知函数,下列结论不正确的是(

)A.函数的最小正周期为B.函数在区间内单调递减C.函数的图象关于轴对称D.把函数的图象向左平移个单位长度可得到的图象4.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”5.已知等差数列{an},若a2=10,a5=1,则{an}的前7项和为A.112 B.51 C.28 D.186.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点7.已知在中,,则的形状是A.锐角三角形 B.钝角三角形C.等腰三角形 D.直角三角形8.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.9.已知向量与的夹角为,,,当时,实数为()A. B. C. D.10.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,,前n项和取得最大值时n的值为___________.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.14.某银行一年期定期储蓄年利率为2.25%,如果存款到期不取出继续留存于银行,银行自动将本金及80%的利息(利息须交纳20%利息税,由银行代交)自动转存一年期定期储蓄,某人以一年期定期储蓄存入银行20万元,则5年后,这笔钱款交纳利息税后的本利和为________元.(精确到1元)15.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.16.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)求的值.18.在已知数列中,,.(1)若数列中,,求证:数列是等比数列;(2)设数列、的前项和分别为、,是否存在实数,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.19.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.20.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程.21.已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性,并用定义加以证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【点睛】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.2、D【解析】由题意可得三棱锥的三对对棱分别相等,所以可将三棱锥补成一个长方体,如图所示,该长方体的外接球就是三棱锥的外接球,长方体共顶点的三条面对角线的长分别为,设球的半径为,则有,在中,由余弦定理得,再由正弦定理得为外接圆的半径),则,因此球心到平面的距离,故选D.点睛:本题主要考查了球的组合体问题,本题的解答中采用割补法,考虑到三棱锥的三对对棱相等,所以可得三棱锥补成一个长方体,长方体的外接球就是三棱锥的外接球,求出求出球的半径,进而求解距离,其中正确认识组合体的特征和恰当补形时解答的关键.3、D【解析】

利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.【详解】由题意,函数其最小正周期为,故选项A正确;函数在上为减函数,故选项B正确;函数为偶函数,关于轴对称,故选项C正确把函数的图象向左平移个单位长度可得,所以选项D不正确.故答案为D【点睛】本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.4、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.5、C【解析】

根据等差数列的通项公式和已知条件列出关于数列的首项和公差的方程组,解出数列的首项和公差,再根据等差数列的前项和可得解.【详解】由等差数列的通项公式结合题意有:,解得:,则数列的前7项和为:,故选:C.【点睛】本题考查等差数列的通项公式和前项公式,属于基础题.6、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.7、D【解析】

利用正弦定理可将已知中的等号两边的“边”转化为它所对角的正弦,再利用余弦定理化简即得该三角形的形状.【详解】根据正弦定理,原式可变形为:所以整理得.故选.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.9、B【解析】

利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【详解】,,向量与的夹角为,,,,解得.故选:B.【点睛】本题考查利用向量垂直求参数,考查计算能力,属于基础题.10、D【解析】

通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【详解】由题意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本题选D.【点睛】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.12、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、371【解析】

由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.14、218660【解析】

20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【详解】20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【点睛】本题主要考查了银行存款的复利问题,由固定公式可用,本息和=本金×(1+利率×(1-15、.【解析】

设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.16、0.9【解析】

先计算,再计算【详解】故答案为0.9【点睛】本题考查了互斥事件的概率计算,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)20,(2)【解析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【详解】(1)由,得,所以=(2)∵,∴【点睛】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.18、(1)见解析;(2)存在,.【解析】

(1)利用等比数列的定义结合数列的递推公式证明出为非零常数,即可证明出数列为等比数列,并可求出数列的通项公式;(2)求出数列的通项公式,利用分组求和法与等比数列的求和公式分别求出数列、,设,列出关于、、的方程组,解出即可.【详解】(1)在数列中,,,则,,且,数列是以为首项,为公比的等比数列,;(2),整理得,,,,所以,,若数列为等差数列,可设,则,即,则,解得,因此,存在实数,使得数列为等差数列.【点睛】本题考查等差数列的证明、数列求和以及等差数列的存在性问题,熟悉等差数列的定义和通项公式的结构是解题的关键,考查推理能力与运算求解能力,属于中等题.19、(1)见解析(2)【解析】

(1)根据与的关系,再结合等差数列的定义,即可证明;(2)由(1)可求出,采用裂项相消法求出,要恒成立,只需即可求出.【详解】(1)由题知:,当得:,解得:当,①②得:,即.是以为首项,为公差的等差数列.(2)由(1)知:所以即.【点睛】本题主要考查与的关系,等差数列的定义,裂项相消法以及恒成立问题的解法的应用,意在考查学生的数学运算能力,属于基础题.20、(1);(2).【解析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程.解:(1)设点C(x,y),∵边AC的中点M在y轴上得=1,∵边BC的中点N在x轴上得=1,解得x=﹣5,y=﹣2.故所求点C的坐标是(﹣5,﹣2).(2)点M的坐标是(1,﹣),点N的坐标是(1,1),直线MN的方程是=,即5x﹣2y﹣5=1.点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论