版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省惠阳高级中学数学高一下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的周期为()A. B. C. D.2.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为()A.54 B. C.90 D.814.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.5.已知向量,则与的夹角为()A. B. C. D.6.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.67.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等9.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.410.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.已知椭圆的右焦点为,过点作圆的切线,若两条切线互相垂直,则_____________.12.已知直线:与直线:互相平行,则直线与之间的距离为______.13.已知扇形的面积为,圆心角为,则该扇形半径为__________.14.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.15.将边长为1的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为______.16.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,,,分别为内角,,所对的边,且满足.(1)求角的大小;(2)若,,求的面积.18.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(I)求的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.19.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.组号
分组
回答正确
的人数
回答正确的人数
占本组的概率
第1组
5
0.5
第2组
0.9
第3组
27
第4组
0.36
第5组
3
(Ⅰ)分别求出的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.20.数列中,,,数列满足.(1)求数列中的前四项;(2)求证:数列是等差数列;(3)若,试判断数列是否有最小项,若有最小项,求出最小项.21.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.2、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.3、A【解析】
由已知中的三视图可得:该几何体是一个以正方形为底面的斜四棱柱,进而得到答案.【详解】由三视图可知,该多面体是一个以正方形为底面的斜四棱柱,四棱柱的底面是边长为3的正方形,四棱柱的高为6,则该多面体的体积为.故选:A.【点睛】本题考查三视图知识及几何体体积的计算,根据三视图判断几何体的形状,再由几何体体积公式求解,属于简单题.4、B【解析】
从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.5、D【解析】
根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.6、B【解析】
分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。7、A【解析】
根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.8、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.9、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.10、C【解析】试题分析:,,,故选C.考点:数列的递推公式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先分析直线与圆的位置关系,然后结合已知可判断四边形的形状,得出的比值,最后得到答案.【详解】设切点为,根据已知两切线垂直,四边形是正方形,,根据,可得.故填:.【点睛】本题考查了直线与圆的几何性质,以及椭圆的性质,考查了转化与化归的能力,属于基础题型.12、10【解析】
利用两直线平行,先求出,再由两平行线的距离公式求解即可【详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【点睛】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.13、2【解析】
将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.14、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.15、【解析】
画出几何体示意图,将平移至于直线相交,在三角形中求解角度.【详解】根据题意,过B点作BH//交弧于点H,作图如下:因为BH//,故即为所求异面直线的夹角,在中,,在中,因为,故该三角形为等边三角形,即:,在中,,,且母线BH垂直于底面,故:,又异面直线夹角范围为,故,故答案为:.【点睛】本题考查异面直线的夹角求解,一般解决方法为平移至直线相交,在三角形中求角.16、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用正弦定理化简已知的等式,根据sinA不为0,可得出sinB的值,由B为锐角,利用特殊角的三角函数值,即可求出B的度数;(2)由b及cosB的值,利用余弦定理列出关于a与c的关系式,利用完全平方公式变形后,将a+c的值代入,求出ac的值,将a+c=5与ac=6联立,并根据a大于c,求出a与c的值,再由a,b及c的值,利用余弦定理求出cosA的值,将b,c及cosA的值代入即可求出值.【详解】(1),由正弦定理得,所以,因为三角形ABC为锐角三角形,所以.(2)由余弦定理得,,所以所以.18、(Ⅰ)(Ⅱ)平均数74.9,众数75.14,中位数75;(Ш)【解析】
(I)根据频率之和为列方程,结合求出的值.(II)利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III)先计算出从,中分别抽取人和人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【详解】解:(I)依题意得,所以,又,所以.(Ⅱ)平均数为中位数为众数为(Ш)依题意,知分数在的市民抽取了2人,记为,分数在的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:,共28种,其中满足条件的为,共13种,设“至少有1人的分数在”的事件为,则【点睛】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图估计平均数、中位数和众数的方法,考查利用古典概型求概率.属于中档题.19、(Ⅰ);(Ⅱ)第2组抽人;第3组抽3人;第4组抽1人;(III).【解析】
(Ⅰ)由频率表中第1组数据可知,第1组总人数为,再结合频率分布直方图可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人,第3组:人,第4组:人.(Ⅲ)设第2组的2人为、,第3组的3人为、、,第4组的1人为,则从6人中抽2人所有可能的结果有:,,,,,,,,,,,,,,,共15个基本事件,其中第2组至少有1人被抽中的有,,,,,,,,这9个基本事件.∴第2组至少有1人获得幸运奖的概率为本题考查分层抽样方法、统计基础知识与等可能事件的概率.注意等可能事件中的基本事件数的准确性.20、(1),,,;(2)见解析;(3)有最小项,最小项是.【解析】
(1)由数列的递推公式,可计算出数列的前四项,代入,即可计算出数列中的前四项;(2)利用数列的递推公式计算出为常数,结合等差数列的定义可证明出数列是等差数列;(3)求出数列的通项公式,可求出,进而得出,利用作商法判断数列的单调性,从而可求出数列的最小项.【详解】(1)且,,,.,,,,;(2),而,,.因此,数列是首项为,公差为的等差数列;(3)由(2)得,则.,显然,,当时,,则;当时,,则;当时,,则;当且时,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《收入分配的决定》课件
- 2.1《改造我们的学习》课件 2024-2025学年统编版高中语文选择性必修中册
- 内环境稳态-课件
- 安徽省亳州市2025届高考数学四模试卷含解析
- 13.3《 自己之歌(节选)》课件 2023-2024学年统编版高中语文选择性必修中册
- 2025届广东省佛山市四校高三冲刺模拟英语试卷含解析
- 2025届德阳市重点中学高三最后一模英语试题含解析
- 八年级英语FamilylivesVocabulary课件
- 2025届甘肃省宕昌县第一中高考英语倒计时模拟卷含解析
- 天津市武清区等五区县2025届高考英语一模试卷含解析
- 《中国传统文化》课件模板(六套)
- 锅炉使用单位锅炉安全日管控、周排查、月调度制度
- 《信息安全风险管理》课件
- 第24课《寓言四则》说课稿 2024-2025学年统编版语文七年级上册
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- 南京工业大学《高等传热学》2023-2024学年第一学期期末试卷
- GB/T 42125.1-2024测量、控制和实验室用电气设备的安全要求第1部分:通用要求
- 采购部门年终总结报告
- 新能源电站单位千瓦造价标准值(2024版)
- 2024年大数据中心运营合作协议
- 蓝精灵课件教学课件
评论
0/150
提交评论