2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题含解析_第1页
2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题含解析_第2页
2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题含解析_第3页
2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题含解析_第4页
2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省株洲市醴陵第二中学、醴陵第四中学高一数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则一定有()A. B. C. D.2.已知,且,则()A. B. C. D.3.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10104.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球5.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.26.式子的值为()A. B.0 C.1 D.7.内角,,的对边分别为,,.已知,,,则这样的三角形有()A.0个 B.1个 C.2个 D.1个或2个8.已知是定义在上的偶函数,且在上递增,那么一定有()A. B.C. D.9.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.5210.直线与直线的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.若,则函数的值域为________.12.若正实数,满足,则的最小值是________.13.若等比数列满足,且公比,则_____.14.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.15.已知为等差数列,,,,则______.16.已知直线:与直线:平行,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.18.已知平面向量,.(1)若与垂直,求;(2)若,求.19.在中,(Ⅰ)求;(Ⅱ)若,,求的值20.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为,,,,五组,得到如图所示的频率分布直方图.(1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在和内的学生多少人;(2)在(1)的前提下,从这6名学生中随机抽取2名学生进行调查,求月考成绩在内至少有1名学生被抽到的概率.21.设函数.(1)求函数的最小正周期.(2)求函数的单调递减区间;(3)设为的三个内角,若,,且为锐角,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选2、A【解析】

根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【详解】因为,,所以,所以,所以.故选:A【点睛】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.3、D【解析】

由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.4、A【解析】

根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.5、B【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、D【解析】

利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.7、C【解析】

根据和的大小关系,判断出解的个数.【详解】由于,所以,故解的个数有两个.如图所示两个解.故选:C【点睛】本小题主要考查正弦定理的运用过程中,三角形解的个数判断,属于基础题.8、D【解析】

根据题意,结合,可知,再利用偶函数的性质即可得出结论.【详解】是定义在上的偶函数,,在上递增,,即,故选:D.【点睛】本题考查函数奇偶性与单调性的简单应用,判断出是解题关键.9、D【解析】

设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【点睛】本题主要考查球体积的计算公式,属于基础题。10、B【解析】

联立方程组,求得交点的坐标,即可得到答案.【详解】由题意,联立方程组:,解得,即两直线的交点坐标为,在第二象限,选B.【点睛】本题主要考查了两条直线的位置关系的应用,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令,结合可得,本题转化为求二次函数在的值域,求解即可.【详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【点睛】本题考查了函数的值域,利用换元法是解决本题的一个方法.12、【解析】

将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.13、.【解析】

利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.14、【解析】

先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.15、【解析】

由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.16、4【解析】

利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2);(3)【解析】

(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.因此,从而为二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值为.(3)因为,故过点作的平行线必与线段相交,设交点为,连接,;∴或其补角为异面直线与所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,设;在中,;在中,;∴在中,,∴;;解得;∴.【点睛】本题主要考查线线垂直、二面角的平面角、异面直线所成角的.属于中档题.18、(1);(2)【解析】

(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【点睛】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.20、(1)有4人,有2人;(2)【解析】

(1)由频率分布直方图,求出成绩在和内的频率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出从这6名学生中随机抽取2名学生的所有不同取法,再求出被抽到的学生至少有1名月考成绩在内的不同取法,再求解即可.【详解】解:(1)因为,所以,则月考成绩在内的学生有人;月考成绩在内的学生有人,则成绩在和内的频率的比值为,故用分层抽样的方法从月考成绩在内的学生中抽取4人,从月考成绩在内的学生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成绩在内,分别记为,,,;有2人的月考成绩在内,分别记为,.则从这6名学生中随机抽取2名学生的情况为,,,,,,,,,,,,,,,共15种;被抽到的学生至少有1名月考成绩在内的情况为,,,,,,,,,共9种.故月考成绩内至少有1名学生被抽到的概率为.【点睛】本题考查了分层抽样,重点考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论