




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市重点中学2024届高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元2.平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为A. B. C. D.3.已知、为锐角,,,则()A. B. C. D.4.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.5.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.46.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.7.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.8.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.9.已知变量x,y的取值如下表:x12345y1015304550由散点图分析可知y与x线性相关,且求得回归直线的方程为,据此可预测:当时,y的值约为()A.63 B.74 C.85 D.9610.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③二、填空题:本大题共6小题,每小题5分,共30分。11.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。12.函数可由y=sin2x向左平移___________个单位得到.13.函数,函数,若对所有的总存在,使得成立,则实数的取值范围是__________.14.已知,且,则的值是_______.15.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.16.设,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.18.在中,内角所对的边分别为,已知,且.(1)求;(2)若,求的值.19.设函数,其中.(1)在实数集上用分段函数形式写出函数的解析式;(2)求函数的最小值.20.在正△ABC中,AB=2,(t∈R).(1)试用,表示:(2)当•取得最小值时,求t的值.21.在中,,,的对边分别为,,,已知.(1)判断的形状;(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【点睛】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.2、A【解析】
试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.3、B【解析】
利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【详解】因为,且为锐角,则,所以,因为,所以故选:B.【点睛】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.4、B【解析】
由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【点睛】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选6、A【解析】
由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。7、A【解析】
利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。8、D【解析】
设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【详解】设a=3k,b=4k,c=5k,所以cosC=故选D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.9、C【解析】
由已知求得样本点的中心的坐标,代入线性回归方程求得,取求得值即可.【详解】由题得,.故样本点的中心的坐标为,代入,得.,取,得.故选:.【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本点的中心是关键,是基础题.10、B【解析】
说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【点睛】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.二、填空题:本大题共6小题,每小题5分,共30分。11、乙【解析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.12、【解析】
将转化为,再利用平移公式得到答案.【详解】向左平移故答案为【点睛】本题考查三角函数图像的平移,将正弦函数化为余弦函数是解题的关键,也可以将余弦函数化为正弦函数求解.13、【解析】
分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.【详解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),当x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]⊆[1,2],故有3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].故答案为.【点睛】本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解“对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立”的含义,转化为f(x)的值域是g(x)的子集.14、【解析】
计算出的值,然后利用诱导公式可求得的值.【详解】,,则,因此,.故答案为:.【点睛】本题考查利用诱导公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于基础题.15、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题16、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.18、(1);(2).【解析】
(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简,结合,可得A的值;(2)由已知根据余弦定理可得,利用正弦定理可得联立即可解得λ的值.【详解】(1),,;(2),,而,,而,所以有.【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.19、(1);(2).【解析】
(1)令,解得的范围,再结合的意义分段函数形式写出函数的解析式即可.(2)利用的奇偶性,只需要考虑的情形,只需分两种情形讨论:,当时,分别求出的最小值即可.【详解】(1),令,得,解得或,(2)因为是偶函数,所以只需考虑的情形,当时,,当时,当时,,当时,,时,.【点睛】本题主要考查函数单调性的应用、函数解析式的求法、不等式的解法等基本知识,考查了运算求解能力,考查分类讨论思想、化归与转化思想,属于基础题.20、(1)(2)【解析】
(1)根据即可得出,从而解得;(2)由(1)得,根据得,从而进行数量积的运算得出,配方即可得出当时,取最小值.【详解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴时,取最小值.【点睛】本题考查向量减法、加法的几何意义,向量的数乘运算,以及向量的数量积运算及计算公式,配方法解决二次函数问题的方法,属于基础题.21、(1)为直角三角形或等腰三角形(2)【解析】
(1)由正弦定理和题设条件,得,再利用三角恒等变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 散文主题探索与独特表达形式试题及答案
- 中职电子商务市场趋势与分析试题及答案
- 全媒体运营师企业文化试题及答案分析
- 精算师考试新旧大纲变化分析试题及答案
- 信息化物流师资格认定试题及答案
- 2024年注册会计师考试研究热点与试题及答案
- 2025-2030中国高纯氧气行业市场发展趋势与前景展望战略研究报告
- 全媒体运营师多维传播试题及答案
- 2025-2030中国驱蚊手镯市场消费需求与企业经营形势分析研究报告
- 2025-2030中国马口铁行业市场全景调研及投资价值评估咨询报告
- 利用DeepSeek提升教育质量和学习效率
- 2025健身房租赁合同范本模板
- 邢台2025年河北邢台学院高层次人才引进100人笔试历年参考题库附带答案详解
- 2025年长春职业技术学院单招职业技能考试题库汇编
- 中考政治复习方案第二单元法律与秩序考点16违法犯罪教材梳理
- 《重大火灾隐患判定方法》知识培训
- 2025年台州职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 加油站台账记录模板
- 2025年江苏苏州市(12345)便民服务中心招聘座席代表人员高频重点提升(共500题)附带答案详解
- Unit6Topic2SectionB公开课课件仁爱英语八年级下册
- DB4501T 0008-2023 化妆品行业放心消费单位创建规范
评论
0/150
提交评论