![四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view4/M01/06/17/wKhkGGZSucyAbMJGAAJYOujmrlM623.jpg)
![四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view4/M01/06/17/wKhkGGZSucyAbMJGAAJYOujmrlM6232.jpg)
![四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view4/M01/06/17/wKhkGGZSucyAbMJGAAJYOujmrlM6233.jpg)
![四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view4/M01/06/17/wKhkGGZSucyAbMJGAAJYOujmrlM6234.jpg)
![四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view4/M01/06/17/wKhkGGZSucyAbMJGAAJYOujmrlM6235.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省邛崃市文昌中学校2024届高一下数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一组数据0,1,2,3,4的方差是A. B. C.2 D.42.已知为锐角,角的终边过点,则()A. B. C. D.3.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F34.设实数满足约束条件,则的最大值为()A. B.4 C.5 D.5.已知的三边满足,则的内角C为()A. B. C. D.6.下列函数中,最小正周期为的是()A. B. C. D.7.已知为的一个内角,向量.若,则角()A. B. C. D.8.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.129.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.6510.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________12.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.13.函数的反函数为____________.14.已知点在直线上,则的最小值为__________.15.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____16.若存在实数使得关于的不等式恒成立,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.18.王某2017年12月31日向银行贷款元,银行贷款年利率为,若此贷款分十年还清(2027年12月31日还清),每年年底等额还款(每次还款金额相同),设第年末还款后此人在银行的欠款额为元.(1)设每年的还款额为元,请用表示出;(2)求每年的还款额(精确到元).19.求函数的最大值20.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.21.已知函数.(1)求函数的最小正周期;(2)将函数的图象向右平移个单位得到函数的图象,若,求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。2、B【解析】
由题意利用任意角的三角函数的定义求得和,再利用同角三角函数的基本关系求得的值,再利用两角差的余弦公式求得的值.【详解】角的终边过点,,又为锐角,由,可得故选B.【点睛】本题考查任意角的三角函数的定义,考查两角差的余弦,是基础题.3、A【解析】
通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.4、A【解析】
作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,得最大值为,故选:A.【点睛】本题考查简单的线性规划,解题关键是作出可行域和目标函数对应的直线.5、C【解析】原式可化为,又,则C=,故选C.6、D【解析】
由函数的最小正周期为,逐个选项运算即可得解.【详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【点睛】本题考查了三角函数的最小正周期,属基础题.7、C【解析】
带入计算即可.【详解】即,选C.【点睛】本题考查向量向量垂直的坐标运算,属于基础题.8、D【解析】
利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【点睛】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.9、D【解析】,,判断否,,,判断否,,,判断是,输出.故选.10、B【解析】
由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】
根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.12、【解析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.13、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.14、5【解析】
由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。16、【解析】
先求得的取值范围,将题目所给不等式转化为含的绝对值不等式,对分成三种情况,结合绝对值不等式的解法和不等式恒成立的思想,求得的取值范围.【详解】由于,故可化简得恒成立.当时,显然成立.当时,可得,,可得且,可得,即,解得.当时,可得,可得且,可得,即,解得.综上所述,的取值范围是.【点睛】本小题主要考查三角函数的值域,考查含有绝对值不等式恒成立问题,考查存在性问题的求解策略,考查函数的单调性,考查化归与转化的数学思想方法,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【点睛】本题考查向量共线和向量垂直的坐标运算,属于基础题.18、(1)(2)12950元【解析】
(1)计算100000元到第二年年末的本利和,减去第一次还的元到第二年年末的本利和,再减去第二年年末还的元,可得;(2)根据100000元到第10年年末的本利和与每年还款元到第10年年末的本利和相等,得到关于的方程组,进而求得的值.【详解】(1)由题意得:.(2)因为所以,解得:.【点睛】本题以生活中的贷款问题为背景,考查利用等比数列知识解决问题,考查数学建模能力和运算求解能力,求解时要先读懂题意,并理解复利算法,是成功解决问题的关键.19、最大值为5【解析】
本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【详解】,因为,所以当时,即,函数最大,令,,故最大值为.【点睛】本题考查同角三角函数关系以及一元二次函数的相关性质,考查的公式为,考查计算能力,体现了综合性,是中档题.20、(1)证明见解析;(2)【解析】
(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.21、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年山东公务员考试行测试题
- 2025年太阳能光伏组件安装服务合同
- 2025年商业地产租赁协议深度剖析
- 2025年医院食堂食用油采购协议
- 2025年紫外光固化油墨项目规划申请报告
- 2025年互联网用户权益协议
- 2025年货运司机劳动合同
- 2025年肿瘤类生物制品项目提案报告模范
- 2025年保障性住房贷款合同
- 2025年标准个人古董押借款合同样本
- 2024拳击比赛计划书
- 管道直饮水系统技术和方案
- 培养幼儿的时间观念
- 肉山羊规模饲养生产技术规程
- 妇产科国家临床重点专科验收汇报
- 绘本故事PPT课件之我不敢说我怕被骂
- 社区干部培训班交流发言(通用6篇)
- 小学语文-5 对韵歌教学设计学情分析教材分析课后反思
- 中国特色社会主义思想概论 课件 第四章 坚持以人民为中心
- 【课件】免疫系统组成和功能(人教版2019选择性必修1)
- 采购部组织结构图
评论
0/150
提交评论