版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华一中2023-2024学年高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集,集合,则A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1203.已知集合,,则()A. B.C. D.4.实数数列为等比数列,则()A.-2 B.2 C. D.5.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.6.若关于的不等式的解集为,则的取值范围是()A. B. C. D.7.已知函数,则()A. B. C. D.8.若,则()A. B. C.2 D.9.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.10.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的首项为,公比为,则其各项的和为__________.12.若数列{an}满足a1=2,a13.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____14.已知,,则的值为.15.已知在中,,则____________.16.已知,则______;的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,.(1)求证:数列为等差数列,求数列的通项公式;(2)若数列的前项和为,求证:.18.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.19.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.20.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.21.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据函数的单调性解不等式,再解绝对值不等式,最后根据交集的定义求解.【详解】由得,由得,所以,故选D.【点睛】本题考查指数不等式和绝对值不等式的解法,集合的交集.指数不等式要根据指数函数的单调性求解.2、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图3、A【解析】
先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.4、B【解析】
由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.5、B【解析】试题分析:由正弦定理得31考点:正弦定理的应用6、C【解析】
根据对数的性质列不等式,根据一元二次不等式恒成立时,判别式和开口方向的要求列不等式组,解不等式组求得的取值范围.【详解】由得,即恒成立,由于时,在上不恒成立,故,解得.故选:C.【点睛】本小题主要考查对数函数的性质,考查一元二次不等式恒成立的条件,属于基础题.7、A【解析】
由题意结合函数的解析式分别求得的值,然后求解两者之差即可.【详解】由题意可得:,,则.故选:A.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.8、D【解析】
将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.9、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,
∴故选B10、B【解析】
建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即
,从而可求λ的取值范围.【详解】
由题设,建立如图所示的空间直角坐标系D-xyz,
则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范围是(
,1),故选B.
点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.12、2×【解析】
判断数列是等比数列,然后求出通项公式.【详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【点睛】本题考查等比数列的判断以及通项公式的求法,考查计算能力.13、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.14、3【解析】
,故答案为3.15、【解析】
根据可得,根据商数关系和平方关系可解得结果.【详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【点睛】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.16、50【解析】
由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)结合,构造数列,证明得到该数列为等差数列,结合等差通项数列计算方法,即可.(2)运用裂项相消法,即可.【详解】(1)由,(即),可得,所以,所以数列是以为首项,以2为公差的等差数列,所以,即.(2),所以,因为,所以.【点睛】本道题考查了等差数列通项计算方法和裂项相消法,难度一般.18、(1)见解析;(2).【解析】
由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.19、(1)(2)【解析】
(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和20、(1)(2)【解析】
(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【点睛】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决中线的最值问题,意在考查学生的逻辑推理和数学运算能力,属于中档题.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《噪声污染防治法》课件
- 网店美工模拟题+答案
- 吉林省长春市公主岭市2023-2024学年七年级上学期期末模拟考试数学试卷(含答案)
- 养老院老人心理咨询师福利待遇制度
- 养老院老人精神文化生活指导制度
- 《关于液氨的讲课》课件
- 2024年环境检测外包服务合同
- 房屋无偿协议书(2篇)
- 《增值的战略评估》课件
- 2025年上饶货运从业资格证模拟考
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
- 金蛇纳瑞2025年公司年会通知模板
- 有限空间应急预案演练方案及过程
- GB/T 16288-2024塑料制品的标志
- 四年级英语上册 【月考卷】第三次月考卷(Unit 5-Unit 6) (含答案)(人教PEP)
- 某某市“乡村振兴”行动项目-可行性研究报告
- 中国航空协会:2024低空经济场景白皮书
评论
0/150
提交评论