版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西贵港市覃塘高级中学2024年高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a,b,c的大小关系为()A. B. C. D.2.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.3.在中,角对应的边分别是,已知,的面积为,则外接圆的直径为()A. B. C. D.4.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.5.设为数列的前项和,,则的值为()A. B. C. D.不确定6.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或7.直线2x+y+4=0与圆x+22+y+32=5A.255 B.4558.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.49.从某健康体检中心抽取了8名成人的身高数据(单位:厘米),数据分别为172,170,172,166,168,168,172,175,则这组数据的中位数和众数分别是()A.171172 B.170172 C.168172 D.17017510.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}二、填空题:本大题共6小题,每小题5分,共30分。11.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为12.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.13.方程的解集是__________.14.在上,满足的的取值范围是______.15.数列定义为,则_______.16.函数在的递减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?18.设全集是实数集,集合,.(1)若,求实数的取值范围;(2)若,求.19.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.20.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.21.已知.(1)求;(2)求向量与的夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.2、C【解析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【点睛】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.3、D【解析】
根据三角形面积公式求得;利用余弦定理求得;根据正弦定理求得结果.【详解】由题意得:,解得:由余弦定理得:由正弦定理得外接圆的直径为:本题正确选项:【点睛】本题考查正弦定理、余弦定理、三角形面积公式的综合应用问题,考查学生对于基础公式和定理的掌握情况.4、A【解析】
根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.5、C【解析】
令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.6、D【解析】
根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【点睛】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.7、C【解析】
先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.8、B【解析】
判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.9、A【解析】
由中位数和众数的定义,即可得到本题答案.【详解】把这组数据从小到大排列为166,168,168,170,172,172,172,175,则中位数为,众数为172.故选:A【点睛】本题主要考查中位数和众数的求法.10、B【解析】
根据交集定义计算.【详解】由题意A∩B={x|3<x<4}.故选B.【点睛】本题考查集合的交集运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.12、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.13、【解析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.14、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.15、【解析】
由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.16、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.【解析】试题分析:(1)根据利润等于收入减成本列式:,由投入的肥料费用不超过5百元及实际意义得定义域,(2)利用基本不等式求最值:先配凑:,再根据一正二定三相等求最值.试题解析:解:(1)().(2).当且仅当时,即时取等号.故.答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.18、(1)或(2)当时,;当时,【解析】
(1)若,则或,解得实数的取值范围;(2)若则,结合交集定义,分类讨论可得.【详解】解:(1)若,则或,即或.所以的取值范围为或.(2)∵,则且,∴.当时,;当时,.【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和两个零点计算出和的值,再由最值点以及的的范围计算的值;(Ⅱ)先根据(Ⅰ)中解析式将表示出来,然后再利用两角和的正弦公式计算的值.【详解】解:(Ⅰ)由函数最大值为2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【点睛】根据三角函数图象求解析式的步骤:(1)由最值确定的值;(2)由周期确定的值;(3)由最值点或者图像上的点确定的取值.这里需要注意确定的值时,尽量不要选取平衡位置上的点,这样容易造成多解的情况.20、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《噪声污染防治法》课件
- 网店美工模拟题+答案
- 吉林省长春市公主岭市2023-2024学年七年级上学期期末模拟考试数学试卷(含答案)
- 养老院老人心理咨询师福利待遇制度
- 养老院老人精神文化生活指导制度
- 《关于液氨的讲课》课件
- 2024年环境检测外包服务合同
- 房屋无偿协议书(2篇)
- 《增值的战略评估》课件
- 2025年上饶货运从业资格证模拟考
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
- 金蛇纳瑞2025年公司年会通知模板
- 有限空间应急预案演练方案及过程
- GB/T 16288-2024塑料制品的标志
- 四年级英语上册 【月考卷】第三次月考卷(Unit 5-Unit 6) (含答案)(人教PEP)
- 某某市“乡村振兴”行动项目-可行性研究报告
- 中国航空协会:2024低空经济场景白皮书
评论
0/150
提交评论