版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省井研中学2023-2024学年高一下数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量与的夹角为,且,则()A. B. C. D.2.已知,则=()A. B. C. D.3.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.4.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.设,,,则的最小值为()A.2 B.4 C. D.6.函数(其中,)的部分图象如图所示、将函数的图象向左平移个单位长度,得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的单调递增区间为C.函数为偶函数D.函数的图象的对称轴为直线7.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.8.若,则()A.-4 B.3 C.4 D.-39.下列条件不能确定一个平面的是()A.两条相交直线 B.两条平行直线 C.直线与直线外一点 D.共线的三点10.设等差数列的前n项和为,首项,公差,,则最大时,n的值为()A.11 B.10 C.9 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列,,,,则______.12.两圆交于点和,两圆的圆心都在直线上,则____________;13.设满足约束条件若目标函数的最大值为,则的最小值为_________.14.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.15.若点为圆的弦的中点,则弦所在的直线的方程为___________.16.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.18.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.19.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.20.已知数列满足:.(1)证明数列是等比数列,并求数列的通项;(2)求数列的前项和.21.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据平面向量数量积的运算法则,将平方运算可得结果.【详解】∵,∴,∴cos=4,∴,故选A.【点睛】本题考查了利用平面向量的数量积求模的应用问题,考查了数量积与模之间的转化,是基础题目.2、C【解析】由得:,所以,故选D.3、D【解析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.4、D【解析】
对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.5、D【解析】
利用基本不等式可得,再结合代入即可得出答案.【详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【点睛】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.6、B【解析】
本题首先可以根据题目所给出的图像得出函数的解析式,然后根据三角函数平移的相关性质以及函数的解析式得出函数的解析式,最后通过函数的解析式求出函数的单调递增区间,即可得出结果.【详解】由函数的图像可知函数的周期为、过点、最大值为3,所以,,,,,所以取时,函数的解析式为,将函数的图像向左平移个单位长度得,当时,即时,函数单调递增,故选B.【点睛】本题考查三角函数的相关性质,主要考查三角函数图像的相关性质以及三角函数图像的变换,函数向左平移个单位所得到的函数,考查推理论证能力,是中档题.7、A【解析】
由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.8、A【解析】
已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.9、D【解析】
根据确定平面的公理和推论逐一判断即可得解.【详解】解:对选项:经过两条相交直线有且只有一个平面,故错误.对选项:经过两条平行直线有且只有一个平面,故错误.对选项:经过直线与直线外一点有且只有一个平面,故错误.对选项:过共线的三点,有无数个平面,故正确;故选:.【点睛】本题主要考查确定平面的公理及推论.解题的关键是要对确定平面的公理及推论理解透彻,属于基础题.10、B【解析】
由等差数列前项和公式得出,结合数列为递减数列确定,从而得到最大时,的值为10.【详解】由题意可得等差数列的首项,公差则数列为递减数列即当时,最大故选B。【点睛】本题对等差数列前项和以及通项公式,关键是将转化为,结合数列的单调性确定最大时,的值为10.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.12、【解析】
由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【点睛】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.13、【解析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.14、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.15、;【解析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).16、【解析】
根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据得,得或,结合取值范围求解;(2)结合换元法处理二次不等式恒成立求参数的取值范围.【详解】(1),即,即有,所以或,即或由于,,所以;(2),令,对任意都有恒成立,即对恒成立,只需,解得:,所以的最大值为.【点睛】此题考查根据三角函数值相等求自变量取值的关系,利用换元法转化为二次函数处理不等式问题,根据不等式恒成立求参数的取值范围,涉及根的分布的问题.18、(1)见解析;(2).【解析】
由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.19、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.20、(1)见证明;(2)【解析】
(1)由变形得,即,从而可证得结论成立,进而可求出通项公式;(2)由(1)及条件可求出,然后根据分组求和法可得.【详解】(1)证明:因为,所以.因为所以所以.又,所以是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习投资风格与风险管理计划
- 幼儿园游戏规则与礼仪教育方案计划
- 主管的亲和力提升建议计划
- 学校教学工作总体计划
- 包装材料加工机械相关项目投资计划书范本
- 一卡通管理系统相关行业投资规划报告
- 射频消融仪相关项目投资计划书
- 体外诊断仪器行业相关投资计划提议
- 加油站安全管理教育课件
- 《教师专业标准》课件
- 专题6:板块模型(教学设计) 2023-2024学年高一物理同步讲练课堂(人教版2019必修第一册)
- DB13(J)T 8427-2021 绿色建筑评价标准(京津冀)
- 小学科学《点亮小灯泡》教学课件
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-上(单选题)
- 电动汽车充电站新建工程项目管理实施规划
- 人教部编版五年级语文上册 习作《 即景》说课稿
- 《水质六价铬的监测现场快速监测分光光度法》编制说明
- 小红书:2024母婴行业特色人群报告
- DB2104-T 0034-2023 地理标志产品 抚顺琥珀
- 2024版年度树立正确就业观课件
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
评论
0/150
提交评论