版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市漳平第一中学2023-2024学年高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是等差数列的前项和,若,则()A. B. C. D.2.若一元二次不等式对一切实数都成立,则的取值范围是()A. B. C. D.3.在中,分别是角的对边,,则角为()A. B. C. D.或4.点关于直线的对称点的坐标为()A. B. C. D.5.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2606.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.7.在△ABC中,已知tan=sinC,则△ABC的形状为()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形8.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.9.已知圆截直线所得弦的长度为4,则实数a的值是A. B. C. D.10.设函数,若关于的方程恰有个不同的实数解,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列则.12.设为实数,为不超过实数的最大整数,如,.记,则的取值范围为,现定义无穷数列如下:,当时,;当时,,若,则________.13.若,且,则是第_______象限角.14.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.15.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____16.函数的单调递增区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值时的值.18.已知圆的方程为.(1)求过点且与圆相切的直线的方程;(2)直线过点,且与圆交于两点,若,求直线的方程;(3)是圆上一动点,,若点为的中点,求动点的轨迹方程.19.已知直线,.(1)证明:直线过定点;(2)已知直线//,为坐标原点,为直线上的两个动点,,若的面积为,求.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;21.在中,(Ⅰ)求;(Ⅱ)若,,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值.【详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选D.【点睛】本题考查等差数列片断和的性质,再利用片断和的性质时,要注意下标之间的倍数关系,结合性质进行求解,考查运算求解能力,属于中等题.2、A【解析】
该不等式为一元二次不等式,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,从而可得关于参数的不等式组,解之可得结果.【详解】不等式为一元二次不等式,故,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,则,解不等式组,得.故本题正确答案为A.【点睛】本题考查一元二次不等式恒成立问题,考查一元二次函数的图象与性质,注意数形结合的运用,属基础题.3、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.5、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.6、D【解析】
设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.7、C【解析】
解:因为选C8、A【解析】
直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A9、B【解析】试题分析:圆化为标准方程为,所以圆心为(-1,1),半径,弦心距为.因为圆截直线所得弦长为4,所以.故选B.10、B【解析】
由已知中函数,若关于的方程恰有个不同的实数解,可以根据函数的图象分析出实数的取值范围.【详解】函数的图象如下图所示:关于的方程恰有个不同的实数解,令t=f(x),可得t2﹣at+2=0,(*)则方程(*)的两个解在(1,2],可得,解得,故选:B.【点睛】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.12、【解析】
根据已知条件,计算数列的前几项,观察得出无穷数列呈周期性变化,即可求出的值。【详解】当时,,,,,……,无穷数列周期性变化,周期为2,所以。【点睛】本题主要考查学生的数学抽象能力,通过取整函数得到数列,观察数列的特征,求数列中的某项值。13、三【解析】
利用二倍角公式计算出的值,结合判断出角所在的象限.【详解】由二倍角公式得,又,因此,是第三象限角,故答案为三.【点睛】本题考查利用三角函数值的符号与角的象限之间的关系,考查了二倍角公式,对于角的象限与三角函数值符号之间的关系,充分利用“一全二正弦、三切四余弦”的规律来判断,考查分析问题与解决问题的能力,属于中等题.14、或【解析】
由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15、【解析】
利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【点睛】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.16、【解析】
令,解得的范围即为所求的单调区间.【详解】令,,解得:,的单调递增区间为故答案为:【点睛】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),最大值为.(2)时,最小值0.时,最大值.【解析】
(1)利用数量积公式、倍角公式和辅助角公式,化简,再利用三角函数的有界性,即可得答案;(2)利用整体法求出,再利用三角函数线,即可得答案.【详解】(1)∴,的最大值为.(2)由(1)得,∵,.,当时,即时,取最小值0.当,即时,取最大值.【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.18、(1)和;(2)或;(3)【解析】
(1)分斜率存在和不存在两种情况讨论,利用直线与圆相切时,圆心到直线的距离等于半径求解;(2)根据弦长,可求圆心到直线的距离,利用距离公式,可求直线斜率;(3)利用求轨迹方程的方法(代入法)求解.【详解】(1)当斜率不存在时,过点的方程是与圆相切,满足条件,当斜率存在时,设直线方程:,直线与圆相切时,,解得:,.所以,满足条件的直线方程是或.(2)设直线方程:,设圆心到直线的距离,,解得或,所以满足条件的直线方程是或.(3)设,那么,将点代入圆,可得.【点睛】本题考查了直线与圆相切,相交的问题,属于基础题型,这类求直线的问题,需分斜率不存在和存在两种情况讨论,当直线与圆相切时,利用圆心到直线的距离等于半径求解,当直线与圆相交时,可利用弦长公式和圆心到直线的距离求解直线方程.19、(1)见详解;(2)【解析】
(1)将直线变形,然后令前系数为0,可得结果.(2)根据直线//,可得,然后计算点到直线距离,根据面积公式,可得结果.【详解】(1)由则直线,令且所以对任意的,直线必过定点(2)由直线//,所以可知直线,则直线,点到直线距离为又,所以【点睛】本题主要考查直线过定点问题以及平面中线线平行关系,属基础题.20、(Ⅰ)0.4;(Ⅱ)20.【解析】
(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【详解】(1)根据频率分布直方图可知,样本中分数不小于的频率为,所以样本中分数小于的频率为.所以从总体的名学生中随机抽取一人,其分数小于的概率估计为。(2)根据题意,样本中分数不小于的频率为,分数在区间内的人数为,所以总体中分数在区间内的人数估计为。【点睛】遇到频率分布直方图问题时需要注意:在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度平行进口车售后服务配件供应链合同样本3篇
- 初中教师校本研修工作计划
- 社团活动策划书集合15篇
- 精彩的乒乓球比赛作文汇编十篇
- 安徒生童话红鞋读后感
- 2024年文化艺术节演出赞助与版权许可合同
- 2024年度高新技术担保追偿执行协议下载3篇
- 2024区出租车租赁与广告合作综合协议3篇
- 冀教版小学科学六年级上册《地球绕着太阳转》课件
- 《大学计算机》课件-第1章
- 第五单元晚晴时期的内忧外患与救亡图存(单元教学设计)高一历史系列(中外历史纲要上册)
- 潜力评估表格
- 化工设计习题及答案
- IT日语邮件写作课件
- 食品试验设计与统计分析期末复习资料
- (完整版)高中物理-教科版目录(全套)
- 基于MATLAB仿真的BPSK的调制与解调报告
- 义务教育英语课程标准(2022年版)
- 巴蜀文化智慧树知到答案章节测试2023年四川大学
- 水利三类人员安全员b证考试题库及答案(完整版)
- 高中生物竞赛辅导课件【备课精讲精研精析】微生物的生长所需培养基
评论
0/150
提交评论