版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省揭阳市榕城区揭阳三中数学高一下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.42.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.43.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③相等的角在直观图中仍然相等;④正方形的直观图是正方形.以上结论正确的是()A.①② B.① C.③④ D.①②③④4.已知是非零向量,若,且,则与的夹角为()A. B. C. D.5.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.6.已知点在角的终边上,函数图象上与轴最近的两个对称中心间的距离为,则的值为()A. B. C. D.7.对一切,恒成立,则实数的取值范围是()A. B.C. D.8.已知,,从射出的光线经过直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为()A. B.3 C. D.9.在中,,BC边上的高等于,则A. B. C. D.10.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.13二、填空题:本大题共6小题,每小题5分,共30分。11.向量满足:,与的夹角为,则=_____________;12.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.13.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.14.已知等差数列的前n项和为,若,,,则________15.在中,内角的对边分别为,若的周长为,面积为,,则__________.16.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.18.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.19.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.20.已知分别是锐角三个内角的对边,且,且.(Ⅰ)求的值;(Ⅱ)求面积的最大值;21.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.2、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.3、A【解析】
由直观图的画法和相关性质,逐一进行判断即可.【详解】斜二侧画法会使直观图中的角度不同,也会使得沿垂直于水平线方向的长度与原图不同,而多边形的边数不会改变,同时平行直线之间的位置关系依旧保持平行,故:①②正确,③和④不对,因为角度会发生改变.故选:A.【点睛】本题考查斜二侧画法的相关性质,注意角度是发生改变的,这是易错点.4、D【解析】
由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.5、C【解析】
以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.6、C【解析】由题意,则,即,则;又由三角函数的定义可得,则,应选答案C.7、B【解析】
先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.8、A【解析】
根据题意,画出示意图,求出点的坐标,进而利用两点之间距离公式求解.【详解】根据题意,作图如下:已知直线AB的方程为:,则:点P关于直线AB的对称点为,则:,解得点,同理可得点P关于直线OB的对称点为:故光线的路程为.故选:A.【点睛】本题考查点关于直线的对称点的求解、斜率的求解、以及两点之间的距离,属基础题.9、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.10、C【解析】
由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据模的计算公式可直接求解.【详解】故填:.【点睛】本题考查了平面向量模的求法,属于基础题型.12、1【解析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.13、371【解析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.14、1【解析】
由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.15、3【解析】
分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.16、【解析】
画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【点睛】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.18、(1);(2).【解析】
(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和两个零点计算出和的值,再由最值点以及的的范围计算的值;(Ⅱ)先根据(Ⅰ)中解析式将表示出来,然后再利用两角和的正弦公式计算的值.【详解】解:(Ⅰ)由函数最大值为2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【点睛】根据三角函数图象求解析式的步骤:(1)由最值确定的值;(2)由周期确定的值;(3)由最值点或者图像上的点确定的取值.这里需要注意确定的值时,尽量不要选取平衡位置上的点,这样容易造成多解的情况.20、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用正弦定理将角化为边得,利用余弦定理可得;(Ⅱ)由及基本不等式可得,故而可得面积的最大值.试题解析:(Ⅰ)因为,由正弦定理有,既有,由余弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚财产分割协议公证与子女抚养权
- 2025年度水利工程招标投标廉洁保证协议3篇
- 2024物流公司与国际快递公司之间的国际快递服务合同
- 2024资产包居间合同协议书范本
- 2025年度智能仓储物流园区物业管理合同4篇
- 2025年度绿色能源风力发电项目承包合同范本3篇
- 2025年度生态旅游区树木承包合同范本4篇
- 2024经济合同范文集合
- 2025年度个人房屋转租中介服务协议4篇
- 2025年度绿色校园猪肉配送服务合同3篇
- 安徽省淮南四中2025届高二上数学期末统考模拟试题含解析
- 2025届重庆南开中学数学高二上期末教学质量检测试题含解析
- 2024年重点信访人员稳控实施方案
- 保险专题课件教学课件
- 常见症状腹痛课件
- 《生活垃圾的回收与利用》(教案)-2024-2025学年四年级上册综合实践活动教科版
- 汽车租赁行业的利润空间分析
- 电商代运营合作协议书2024年
- 2024年中考英语阅读理解D篇真题汇编(附答案)0117
- 牛津上海版小学英语一年级上册同步练习试题(全册)
- 多数据中心数据同步保存
评论
0/150
提交评论