2025届重庆南开中学数学高二上期末教学质量检测试题含解析_第1页
2025届重庆南开中学数学高二上期末教学质量检测试题含解析_第2页
2025届重庆南开中学数学高二上期末教学质量检测试题含解析_第3页
2025届重庆南开中学数学高二上期末教学质量检测试题含解析_第4页
2025届重庆南开中学数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆南开中学数学高二上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.2.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离3.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定4.已知函数,若,则()A. B.0C.1 D.25.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件6.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.7.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.8.若将双曲线绕其对称中心顺时针旋转120°后可得到某一函数的图象,且该函数在区间上存在最小值,则双曲线C的离心率为()A. B.C.2 D.9.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.10.曲线在处的切线的倾斜角是()A. B.C. D.11.已知数列满足,,则()A. B.C. D.12.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.14.已知的顶点A(1,5),边AB上的中线CM所在的直线方程为,边AC上的高BH所在直线方程为,求(1)顶点C的坐标;(2)直线BC的方程;15.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.16.函数的图象在点处的切线的方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由18.(12分)已知三角形ABC的内角A,B,C的对边分别为a,b,c,且(1)求角B;(2)若,角B的角平分线交AC于点D,,求CD的长19.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.20.(12分)已知公差不为的等差数列的首项,且、、成等比数列.(1)求数列的通项公式;(2)设,,是数列的前项和,求使成立的最大的正整数.21.(12分)已知的离心率为,短轴长为2,F为右焦点(1)求椭圆的方程;(2)在x轴上是否存在一点M,使得过F的任意一条直线l与椭圆的两个交点A,B,恒有,若存在求出M的坐标,若不存在,说明理由22.(10分)已知椭圆:的一个焦点坐标为,离心率.(1)求椭圆的方程;(2)设为坐标原点,椭圆与直线相交于两个不同的点A、B,线段AB的中点为M.若直线OM的斜率为-1,求线段AB的长;(3)如图,设椭圆上一点R的横坐标为1(R在第一象限),过R作两条不重合直线分别与椭圆交于P、Q两点、若直线PR与QR的倾斜角互补,求直线PQ的斜率的所有可能值组成的集合.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B2、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系3、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.4、D【解析】求出函数的导数,直接代入即可求值.【详解】因为,所以,所以,所以.故选:D.5、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D6、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.7、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A8、C【解析】由题意,可知双曲线的一条渐近线的倾斜角为120°,再确定参数的正负即可求解.【详解】双曲线,令,则,显然,则一条渐近线方程为,绕其对称中心顺时针旋转120°后可得到某一函数的图象,则渐近线就需要旋转到与坐标轴重合,故渐近线方程的倾斜角为120°,即,该函数在区间上存在最小值,可知,所以,所以.故选:C9、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.10、D【解析】求出函数的导数,再求出并借助导数的几何意义求解作答.【详解】由求导得:,则有,因此,曲线在处的切线的斜率为,所以曲线在处切线的倾斜角是.故选:D11、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.12、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:14、(1);(2).【解析】(1)设出点C的坐标,进而根据点C在中线上及求得答案;(2)设出点B的坐标,进而求出点M的坐标,然后根据中线的方程及求出点B的坐标,进而求出直线BC的方程.【小问1详解】设C点的坐标为,则由题知,即.【小问2详解】设B点的坐标为,则中点M坐标代入中线CM方程则由题知,即,又,则,所以直线BC方程为.15、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.16、【解析】求导,求得,,根据直线的点斜式方程求得答案.【详解】因为,,所以切线的斜率,切线方程是,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①或;②过定点、,理由见解析.【解析】(1)由焦点三角形的周长、离心率求椭圆参数,即可得椭圆方程.(2)①由(1)可得,结合椭圆的定义求,即可确定的坐标;②由题设,求直线、的方程,进而求、坐标,即可得为直径的圆的方程,令求横坐标,即可得定点.【小问1详解】由题设,易知:,可得,则,∴椭圆.【小问2详解】①由(1)知:,令,则,∴,解得,故,此时或②由(1),,,∴可令直线:,直线:,∴将代入直线可得:,,则圆心且半径为,∴为直径的圆为,当时,,又,∴,可得或.∴为直径的圆过定点、.【点睛】关键点点睛:第二问,应用点斜式写出直线、的方程,再求、坐标,根据定义求为直径的圆的方程,最后令及在椭圆上求定点.18、(1)(2)【解析】(1)根据正弦定理边角互化得,进而得;(2)根据题意得,进而在中,由余弦定理即可得答案.【小问1详解】解:因为,所以由正弦定理可得,所以,即,因为,所以,故,因为,所以【小问2详解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得19、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.20、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于实数的等式,结合可求得的值,由此可得出数列的通项公式;(2)利用裂项求和法求出,解不等式即可得出结果.【小问1详解】解:设等差数列公差为,则,由题意可得,即,整理得,,解得,故.【小问2详解】解:,所以,,由得,可得,所以,满足成立的最大的正整数的值为.21、(1);(2)存在点M满足条件,点M的坐标为.【解析】(1)根据给定条件直接计算出即可求解作答.(2)假定存在点,当直线l与x轴不重合时,设出l的方程,与椭圆C的方程联立,借助、斜率互为相反数计算得解,再验证直线l与x轴重合的情况即可作答.【小问1详解】依题意,,而离心率,即,解得,所以椭圆C的方程为:.【小问2详解】由(1)知,,假定存在点满足条件,当直线与x轴不重合时,设l的方程为:,由消去x并整理得:,设,则有,因,则直线、斜率互为相反数,于是得:,整理得,即,则有,即,而m为任意实数,则,当直线l与x轴重合时,点A,B为椭圆长轴的两个端点,点也满足,所以存在点M满足条件,点M的坐标为.【点睛】思路点睛:解答直线与椭圆相交的问题,常把直线与椭圆的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.22、(1);(2);(3).【解析】(1)根据给定条件求出椭圆长半轴长a即可计算得解.(2)将代入椭圆的方程,再结合给定条件求出k值即可计算出AB的长.(3)设出直线PR的方程,再与椭圆的方程联立求出点P坐标,同理可得点Q坐标,计算PQ的斜率即可作答.【小问1详解】依题意,椭圆的半焦距c=1,而,解得,则,所以椭圆的方程是:.【小问2详解】由消去y并整理得:,解得,,于是得线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论