江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析_第1页
江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析_第2页
江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析_第3页
江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析_第4页
江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省萍乡市大安中学2022-2023学年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移个单位,则所得图象的解析式为A.

B.

C.D.参考答案:C略2.给定两个长度均为2的平面向量和,它们的夹角为,点C在以O为圆心的

圆弧上运动,如图所示,若+,其中x,y,则x+y的最大值是

)A.

B.2

C.

D.

参考答案:D略3.已知与均为单位向量,它们的夹角为60°,那么等于()A. B. C. D.4参考答案:A本题主要考查的是向量的求模公式。由条件可知==,所以应选A。4.如图13-5所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是()图13-5A.45°

B.60°

C.90°

D.120°参考答案:B5.函数(其中)的图象如图所示,为了得到的图像,则只要将的图像(

A.向右平移个单位长度

B.向右平移个单位长度C.向左平移个单位长度

D.向左平移个单位长度

参考答案:A略6.已知是上的偶函数,且在(-∞,0]上是减函数,若,则不等式的解集是(

)A.(-∞,-3)∪(3,+∞)

B.(-3,0)∪(3,+∞)

C.(-∞,-3)∪(0,3)

D.(-3,0)∪(0,3)参考答案:C试题分析:是上的偶函数,所以,又在上是减函数,且,根据偶函数的对称性,所以当时,,时,,时,,,,所以的解是或,故选C.

7.若则=

(

)A.

B.2

C.

D.参考答案:B8.定义在上的偶函数在[0,+∞)上递减,且,则满足的x的取值范围是(

). A. B.C. D.参考答案:A解:因为偶函数在上递减,由偶函数性质可得,在上递增,因为,所以当时,或,解得.故选.9.已知函数f(x)=(a∈R),若f[f(﹣1)]=1,则a=()A. B. C.1 D.2参考答案:A【考点】分段函数的应用.【专题】函数的性质及应用.【分析】根据条件代入计算即可.【解答】解:∵f[f(﹣1)]=1,∴f[f(﹣1)]=f(2﹣(﹣1))=f(2)=a?22=4a=1∴.故选:A.【点评】本题主要考查了求函数值的问题,关键是分清需要代入到那一个解析式中,属于基础题.10.已知函数f(x)=,则f(f())=()A. B. C. D.参考答案:B【考点】函数的值.【分析】首先求出的函数值,然后判断此函数值所在范围,继续求其函数值.【解答】解:因为>0,所以f()==﹣2,又﹣2<0,所以f(﹣2)=2﹣2=;故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.等差数列{an}中,则此数列的前20项和_________.参考答案:180由,,可知.12.若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为1,则直线m的倾斜角的大小为.参考答案:120°【考点】两条平行直线间的距离.【分析】由两平行线间的距离=1,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为30°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=1,直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为1,可得直线m和两平行线的夹角为90°.由于两条平行线的倾斜角为30°,故直线m的倾斜角为120°,故答案为:120°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,属于基础题.13.我舰在敌岛A处南偏西50°的B处,且A,B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行.若我舰要用2小时追上敌舰,则其速度大小为海里/小时.参考答案:14【考点】解三角形的实际应用.【分析】由题意推出∠BAC=120°,利用余弦定理求出BC=28,然后推出我舰的速度.【解答】解:依题意,∠BAC=120°,AB=12,AC=10×2=20,在△ABC中,由余弦定理,得BC2=AB2+AC2﹣2AB×AC×cos∠BAC=122+202﹣2×12×20×cos120°=784.解得BC=28.所以渔船甲的速度为=14海里/小时.故我舰要用2小时追上敌舰速度大小为:14海里/小时.故答案为:14.14.关于有如下命题,1

若,则是的整数倍;②函数解析式可改为③函数图象关于对称,④函数图象关于点对称。其中正确的命题是参考答案:②15.直线y=1与曲线y=x2﹣|x|+a有四个交点,则a的取值范围是

.参考答案:(1,)【考点】二次函数的性质.【专题】作图题;压轴题;数形结合.【分析】在同一直角坐标系内画出直线y=1与曲线y=x2﹣|x|+a的图象,观察求解.【解答】解:如图,在同一直角坐标系内画出直线y=1与曲线y=x2﹣|x|+a,观图可知,a的取值必须满足,解得.故答案为:(1,)【点评】本小题主要考查函数的图象与性质、不等式的解法,着重考查了数形结合的数学思想.16.已知函数在区间上是减函数,则与的大小关系是______________

参考答案:略17.已知数列,,前n项部分和满足,则_______参考答案:.解析:.于是,().三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)(原创)已知定义在R上的函数满足,当时,

,且。(1)求的值;(2)当时,关于的方程有解,求的取值范围。参考答案:(1)由已知,可得又由可知(2)方程即为在有解。当时,,令

则在单增,当时,,令

则,综上:19.(8分)在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=,b=3,sinC=2sinA.(Ⅰ)求c的值;(Ⅱ)求△ABC的面积S.参考答案:20.(本小题满分10分)某县畜牧水产局连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲图调查表明:每个鱼池平均产量直线上升,从第1年1万只鳗鱼上升到第6年2万只.乙图调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个.请你根据提供的信息说明:(Ⅰ)第5年全县鱼池的个数及全县出产的鳗鱼总数.(Ⅱ)哪一年的规模(即总产量)最大?说明理由.参考答案:解:(Ⅰ)由题得,甲图象所在直线经过和两点,从而求得其直线方程为乙图象所在直线经过和两点,从而求得其直线方程为当时,,,答:第5年鱼池有14个,全县出产的鳗鱼总数为25.2万只.

(Ⅱ)设当第年时的规模总出产量为,

∴∵,∴当时,取最大值为,

即当第2年时,鳗鱼养殖业的规模最大.21.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄[20,30)[30,40)[40,50)[50,60)[60,70]人数

②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.参考答案:(1),平均数为,中位数为(2)①见解析②【分析】(1)由频率分布直方图各个小矩形的面积之和为1可得,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在有2人,在有4人,设在的是,,在的是,可用列举法列举出选2人的所有可能,然后可计算出概率.【详解】(1)由频率分布直方图各个小矩形的面积之和为1,得在频率分布直方图中,这100位参赛者年龄的样本平均数为:设中位数为,由,解得.(2)①每组应各抽取人数如下表:年龄人数12485

②根据分层抽样的原理,年龄在有2人,在有4人,设在的是,,在的是,列举选出2人的所有可能如下:,共15种情况.设“这2人至少有一人的年龄在区间”为事件,则包含:共9种情况则【点睛】本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型.22.(14分)已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作:y=f(t),下表是某日各时的浪高数据:t(时) 0 3 6 9 12 15 18 21 24y(米) 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5经长期观察,y=f(t)的曲线,可以近似地看成函数y=Acosωt+b的图象.(1)根据以上数据,求出函数y=f(t)近似表达式;(2)依据规定,当海浪高度高于0.75米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?参考答案:考点: 已知三角函数模型的应用问题.专题: 计算题;三角函数的图像与性质.分析: (1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0),从表格中找出同(6,0.5)和(12,1.5)是同一个周期内的最小值点和最大值点,由此算出函数的周期T=12并得到ω=,算出A=和k=1,最后根据x=6时函数有最小值0.5解出φ=,从而得到函数y=f(t)近似表达式;(2)根据(1)的解析式,解不等式f(t)>0.75,可得12k﹣4<t<12k+4(k∈z),取k=0、1、2,将得到的范围与对照,可得从8点到16点共8小时的时间可供冲浪者进行运动.解答: (1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0)∵同一周期内,当t=12时ymax=1.5,当t=6时ymin=0.5,∴函数的周期T=2(12﹣6)=12,得ω==,A=(1.5﹣0.5)=且k=(1.5+0.5)=1可得f(t)=sin(t+φ)+1,再将(6,0.5)代入,得0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论