中考数学复习二次函数教案_第1页
中考数学复习二次函数教案_第2页
中考数学复习二次函数教案_第3页
中考数学复习二次函数教案_第4页
中考数学复习二次函数教案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学专题复习五二次函数【教学笔记】考点一:求二次函数的解析式用待定系数法求二次函数的解析式,要根据给定点的特性选择适宜的式子来求解.已知顶点坐标或对称轴或最大值时,可设顶点式y=a(x-h)²+k.已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标与对称轴,可通过设交点式y=a(x-x1)(x-x2)来求解;所给的三个条件是任意三点时,可设一般式y=ax²+bx+c,然后组成三元一次方程组来求解.考点二:根据二次函数图象及性质判断代数式的符号二次函数图象与系数的关系.注意二次函数的系数与其图象的形状、对称轴、特殊点的关系.二次函数与x、y轴的交点问题,根据题意得出抛物线对称轴.考点三:二次函数与实际问题如物体的运动

规律问题、销售利润问题、几何图形的变更问题、存在性问题等.

最值问题函数与方程结合考点四:二次函数的综合应用动点问题数形结合分类讨论与几何图形结合、勾股定理等

【典型例题】考点一:求二次函数的解析式【例1】例1:(2016•四川攀枝花)将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为(C) A.y=﹣2(x+1)2 B.y=﹣2(x+1)2+2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2+1【例2】(2016•资阳)已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【分析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.【例3】(2013•资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.考点:二次函数综合题分析:(1)根据平行四边形的性质可求点C的坐标,由待定系数法即可求出抛物线的解析式;(2)连结BD交对称轴于G,过G作GN⊥BC于H,交x轴于N,根据待定系数法即可求出直线BD的解析式,根据抛物线对称轴公式可求对称轴,由此即可求出点N的坐标;(3)过点M作直线交x轴于点P1,分点P在对称轴的左侧,点P在对称轴的右侧,两种情况讨论即可求出直线的解析式.解答:解:(1)∵点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4),且四边形ABCD是平行四边形,∴AB=CD=5,∴点C的坐标为(5,4),∵过点A、C、D作抛物线y=ax2+bx+c(a≠0),∴,解得.故抛物线的解析式为y=﹣x2+x+4.(2)连结BD交对称轴于G,在Rt△OBD中,易求BD=5,∴CD=BD,则∠DCB=∠DBC,又∵∠DCB=∠CBE,∴∠DBC=∠CBE,过G作GN⊥BC于H,交x轴于N,易证GH=HN,∴点G与点M重合,故直线BD的解析式y=﹣x+4根据抛物线可知对称轴方程为x=,则点M的坐标为(,),即GF=,BF=,∴BM==,又∵MN被BC垂直平分,∴BM=BN=,∴点N的坐标为(,0);(3)过点M作直线交x轴于点P1,易求四边形AECD的面积为28,四边形ABCD的面积为20,由“四边形AECD的面积分为3:4”可知直线P1M必与线段CD相交,设交点为Q1,四边形AP1Q1D的面积为S1,四边形P1ECQ1的面积为S2,点P1的坐标为(a,0),假设点P在对称轴的左侧,则P1F=﹣a,P1E=7﹣a,由△MKQ1∽△MFP1,得=,易求Q1K=5P1F=5(﹣a),∴CQ1=﹣5(﹣a)=5a﹣10,∴S2=(5a﹣10+7﹣a),根据P1(,0),M(,)可求直线P1M的解析式为y=x﹣6,若点P在对称轴的右侧,则直线P2M的解析式为y=﹣x+.点评:考查了二次函数综合题,涉及的知识点有:平行四边形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,抛物线对称轴公式,分类思想的运用,综合性较强,有一定的难度.【课后练习】(2016•四川成都)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为(A)A.y=(x+2)2﹣3 B. y=(x+2)2+3 C. y=(x﹣2)2+3 D. y=(x﹣2)2﹣3(20XX年四川资阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.解答: 解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.(20XX年四川资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____________________.解析:先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.(20XX年四川成都)将二次函数化为的形式,结果为()(A)(B)(C)(D)解:.故选D。考点二:根据二次函数图象及性质判断代数式的符号【例1】(20XX年四川资阳)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是() A.4个 B. 3个 C. 2个 D. 1个解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.【例2】(2013•资阳)如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0B.﹣4<P<﹣2C.﹣2<P<0D.﹣1<P<0分析:求出a>0,b>0,把x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+c=2a﹣4,求出2a﹣4的范围即可.解答:解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴﹣<0,∴b>0,∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0,∴a=2﹣b,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴﹣4<2a﹣4<0,即﹣4<P<0,故选A.【课后练习】(2016•资阳)已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A.m=nB.m=nC.m=n2D.m=n2【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.函数和在同一直角坐标系内的图象大致是()【答案】C;【解析】∵a≠0,∴分a>0,a<0两种情况来讨论两函数图象的分布情况.若a>0,则y=ax+b的图象必经过第一、三象限,的图象开口向上,可排除D.若a>0,b>0,则y=ax+b的图象与y轴的交点在y轴的正半轴上,的图象的对称轴在y轴的左侧,故B不正确.若a>0,b<0,则y=ax+b的图象与y轴的交点在y轴的负半轴上,的图象的对称轴在y轴的右侧,故C正确.若a<0,则y=ax+b的图象必经过第二、四象限,的图象开口向下,故A不正确.考点三:二次函数与实际问题【例1】(20XX年四川资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.解答: 解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000=30x2﹣540x+12000=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.【例2】(20XX年四川成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长为28米长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x米。(1)若花园的面积为192平方米,求x的值;(2)若在P处有一棵树与墙CD、AD的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值。【解析】AB+AC=28m,解:(1)由题意可知:x(28-x)=192,解得x=12或16;∴x的值为12米或16米;(2)∵;∴当x=13米时,【课后练习】(20XX年四川成都)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?解:(1);(2)设果园多种x棵橙子树时,橙子的总产量为z个.由题知:Z=(100+x)y=(100+x)(600-5x)=-5(x-10)2+60500∵a=-5<0∴当x=10时,Z最大=60500.∴果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≧60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?解:(1)销售单价为x元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得x1=70,x2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元;(3)设一个月内获得的利润为w元,根据题意得:w=(x﹣40)(﹣4x+480)=﹣4x2+640x﹣19200=﹣4(x﹣80)2+6400.当x=80时,w的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.考点四:二次函数的综合应用【例1】(2015四川资阳)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图13-1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图13-2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.分析:(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,﹣x+1),则D(x,x2),表示出DM,分类讨论列方程求解;(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.解答:解:(1)因为点C在抛物线上,所以C(1,),又∵直线BC过C、F两点,故得方程组:解之,得,所以直线BC的解析式为:y=﹣x+1;(2)要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M(x,﹣x+1),则D(x,x2),∵MD∥y轴,∴MD=﹣x+1﹣x2,由MD=OF,可得|﹣x+1﹣x2|=1,①当﹣x+1﹣x2=1时,解得x1=0(舍)或x1=﹣3,所以M(﹣3,),②当﹣x+1﹣x2,=﹣1时,解得,x=,所以M(,)或M(,),综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,M点坐标为(﹣3,)或(,)或(,);(3)过点F作FT⊥BR于点T,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,BF====,∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=∠BFC=90°,∴△RFS是直角三角形.【课后练习】(2016四川成都)如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B左侧),与轴交于点C(0,),顶点为D,对称轴与轴交于点H.过点H的直线l交抛物线于P,Q两点,点Q在y轴右侧.(1)求a的值及点A、B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否成为菱形?若能,求出点N的坐标;若不能,请说明理由.解析:(1)∵抛物线与与轴交于点C(0,-EQ\F(8,3)).∴a-3=-EQ\F(8,3),解得:a=EQ\F(1,3),∴y=EQ\F(1,3)(x+1)2-3当y=0时,有EQ\F(1,3)(x+1)2-3=0,∴X1=2,X2=-4∴A(-4,0),B(2,0).(2)∵A(-4,0),B(2,0),C(0,-EQ\F(8,3)),D(-1,-3)∴S四边形ABCD=S△AHD+S梯形OCDH+S△BOC=EQ\F(1,2)×3×3+EQ\F(1,2)(EQ\F(8,3)+3)×1+EQ\F(1,2)×2×EQ\F(8,3)=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S△AHM1=EQ\F(3,10)×10=3,∴EQ\F(1,2)×3×(-yM1)=3∴yM1=-2,点M1(-2,-2),过点H(-1,0)和M1(-2,-2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(EQ\F(1,2),-2),过点H(-1,0)和M2(EQ\F(1,2),-2)的直线l的解析式为y=-EQ\F(4,3)x-EQ\F(4,3).综上:直线l的函数表达式为y=2x+2或y=-EQ\F(4,3)x-EQ\F(4,3).(3)设P(x1,y1)、Q(x2,y2)且过点H(-1,0)的直线PQ的解析式为y=kx+b,∴-k+b=0,∴y=kx+k.由,∴∴x1+x2=-2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(EQ\F(3,2)k-1,EQ\F(3,2)k2).假设存在这样的N点如下图,直线DN∥PQ,设直线DN的解析式为y=kx+k-3由,解得:x1=-1,x2=3k-1,∴N(3k-1,3k2-3)∵四边形DMPN是菱形,∴DN=DM,∴整理得:3k4-k2-4=0,,∵k2+1>0,∴3k2-4=0,解得,∵k<0,∴,∴P(-,6),M(-,2),N(-,1)∴PM=DN=2eq\r(,7),∴四边形DMPN为菱形∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(-,1).(2016四川成都)如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为EQ\F(5,4),求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.xyxyOABDlC备用图xyOABDlCE【答案】:(1)A(-1,0),y=ax+a;(2)a=-EQ\F(2,5);(3)P的坐标为(1,-EQ\F(26eq\r(,7),7))或(1,-4)【解析】:(1)A(-1,0)xyOABDlCEF∵直线l经过点A,∴0xyOABDlCEF∴y=kx+k令ax2-2ax-3a=kx+k,即ax2-(2a+k)x-3a-k=0∵CD=4AC,∴点D的横坐标为4∴-3-EQ\F(k,a)=-1×4,∴k=a∴直线l的函数表达式为y=ax+a(2)过点E作EF∥y轴,交直线l于点F设E(x,ax2-2ax-3a),则F(x,ax+a)EF=ax2-2ax-3a-(ax+a)=ax2-3ax-4aS△ACE=S△AFE-S△CFE=EQ\F(1,2)(ax2-3ax-4a)(x+1)-EQ\F(1,2)(ax2-3ax-4a)x=EQ\F(1,2)(ax2-3ax-4a)=EQ\F(1,2)a(x-EQ\F(3,2))2-EQ\F(25,8)a∴△ACE的面积的最大值为-EQ\F(25,8)a∵△ACE的面积的最大值为EQ\F(5,4),∴-EQ\F(25,8)a=EQ\F(5,4),解得a=-EQ\F(2,5)(3)令ax2-2ax-3a=ax+a,即ax2-3ax-4a=0xyABDlCQPO解得x1=-1,xxyABDlCQPO∵y=ax2-2ax-3a,∴抛物线的对称轴为x=1设P(1,m)①若AD是矩形的一条边,则Q(-4,21a)m=21a+5a=26a,则P(1,26a)∵四边形ADPQ为矩形,∴∠ADP=90°∴AD2+PD2=AP2∴52+(5a)2+(1-4)2+(26a-5a)2=(-1-1)2+(26a)2即a2=EQ\F(1,7),∵a<0,∴a=-EQ\F(eq\r(,7),7),∴P1(1,-EQ\F(26eq\r(,7),7))xyOABDxyOABDlCPQ则线段AD的中点坐标为(EQ\F(3,2),EQ\F(5a,2)),Q(2,-3a)m=5a-(-3a)=8a,则P(1,8a)∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(-1-1)2+(8a)2+(1-4)2+(8a-5a)2=52+(5a)2即a2=EQ\F(1,4),∵a<0,∴a=-EQ\F(1,2),∴P2(1,-4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,-EQ\F(26eq\r(,7),7))或(1,-4)3、(20XX年四川自贡)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.分析: (1)由直线y=x﹣2交x轴、y轴于B、C两点,则B、C坐标可求.进而代入抛物线y=ax2﹣x+c,即得a、c的值,从而有抛物线解析式.(2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已经A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明.(3)在直角三角形中截出矩形,面积最大,我们易得两种情形,①一点为C,AB、AC、BC边上各有一点,②AB边上有两点,AC、BC边上各有一点.讨论时可设矩形一边长x,利用三角形相似等性质表示另一边,进而描述面积函数.利用二次函数最值性质可求得最大面积.解答: (1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.【课后作业】一、选择题1.已知抛物线,将抛物线C平移得到抛物线.若两条抛物线C、关于直线x=1对称.则下列平移方法中,正确的是().A.将抛物线C向右平移个单位B.将抛物线C向右平移3个单位C.将抛的线C向右平移5个单位D.将抛物线C向右平移6个单位2.已知二次函数的图象如图所示,则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为().A.2B.3C.4D.53.二次函数的图象如图所示,则下列关系式不正确的是().A.B.abc>0C.a+b+c>0D.4.在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.B.C.D.5.如图所示,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x的函数关系式是().A.B.C.D.第5题第6题6.如图所示,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3)和(0,3);小明说:a=1,c=3;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有().A.1个B.2个C.3个D.4个7.已知一次函数的图象过点(-2,1),则关于抛物线的三条叙述:①过定点(2,1);②对称轴可以是直线x=l;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的有().A.0个B.1个C.2个D.3个8.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是() A.①②④ B. ①②⑤ C. ②③④ D. ③④⑤二、填空题9.由抛物线y=x2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为.10.已知一元二次方程的一根为-3.在二次函数y=x2+bx-3的图象上有三点、、,y1、y2、y3、的大小关系是.11.如图所示,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为________.第11题第13题12.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式.13.已知二次函数(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0,其中正确的有.(填序号)14.已知抛物线的顶点为,与x轴交于A、B两点,在x轴下方与x轴距离为4的点M在抛物线上,且,则点M的坐标为.15.已知二次函数(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠l的实数).其中正确的结论有________(只填序号).第15题第16题16.如图所示,抛物线向右平移1个单位得到抛物线y2.回答下列问题:(1)抛物线y2的顶点坐标________.(2)阴影部分的面积S=________.(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的开口方向________,顶点坐标________.三、解答题17.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?18.如图所示,已知经过原点的抛物线与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;(3)设△PCD的面积为S,求S关于m的关系式.19.在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.20.如图①所示,在平面直角坐标系中,抛物线与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点,重合.(1)求抛物线的函数表达式;(2)如图②所示,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合).设点A的坐标为(m,n)(m>0).①当PO=PF时,分别求出点P与点Q的坐标;②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】C;【解析】,∴其顶点坐标为,设顶点坐标为,由题意得,∴,∴的解析式为.由到需向右平移5个单位,因此选C.2.【答案】A;【解析】由图象知,a<0,c<0,,∴b>0,ac>0,∴2a-b<0.又对称轴,即2a+b<0.当x=1时,a+b+c>0;当x=-2时,4a-2b+c<0.综上知选A.3.【答案】C;【解析】由抛物线开口向下知a<0,由图象知c>0,,b<0,即abc>0,又抛物线与x轴有两个交点,所以.4.【答案】B;【解析】抛物线,其顶点(-1,2)绕点(0,3)旋转180°后坐标为(1,4),开口向下.∴旋转后的抛物线解析式为.5.【答案】B;【解析】连接O1M、O1O,易知两圆切点在直线OO1上,线段OO1=OA-y=2-y,O1M=y,OM=OA-AM=2-x.由勾股定理得(2-y)2=y2+(2-x)2,故.6.【答案】C;【解析】由小华的条件,抛物线过(3,0)与(1,0)两点,则对称轴为x=2;由小彬的条件,抛物线过点(4,3)又过(0,3)点,∴对称轴为直线x=2;由小明的条件a=1,c=3,得到关系式为,过点(1,0)得b=-4,对称轴为;由小颖的条件抛物线被x轴截得的线段长为2,另一交点可能是(3,0)或(-1,0),当另一交点为(-1,0)时,对称轴不是x=2.所以小颖说的不对.故选C.7.【答案】C;【解析】①若过定点(2,1),则有.整理、化简,得-2a+b=1,与题设隐含条件相符;②若对称轴是直线x=1,这时,2a-b=0,与题设隐含条件不相符;③当a<0时,抛物线开口向下,这时顶点的纵坐标为.由于,.∴.∴.综合以上分析,正确叙述的个数为2,应选C.8.【答案】B;【解析】①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时为增函数,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选B.二、填空题9.【答案】y=(x+2)2-3;【解析】y=x2的顶点为(0,0),y=(x+2)2+3的顶点为(-2,-3),将(0,0)先向左平移2个单位,再向下平移3个单位可得(-2,-3),即将抛物线y=x2先向左平移2个单位,再向下平移3个单位得到抛物线y=(x+2)2-3.10.【答案】y1<y2<y3.【解析】设x2+bx-3=0的另一根为x2,则,∴x2=1,∴抛物线的对称轴为,开口向上时,到对称轴的距离越大函数值越大,所以y1<y3,y1<y2<y3,也可求出b=2,分别求出y1,y2,y3的值再比较大小.11.【答案】或;【解析】当⊙P与x轴相切时,圆心P的纵坐标为2,将y=2得,所以,从而圆心P的坐标为或.12.【答案】y=﹣2(x﹣2)2+1或y=2(x﹣2)2+1;【解析】图象顶点坐标为(2,1)可以设函数解析式是y=a(x﹣2)2+1又∵形状与抛物线y=﹣2x2相同即二次项系数绝对值相同则|a|=2因而解析式是:y=﹣2(x﹣2)2+1或y=2(x﹣2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论