版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市禅城区佛山实验中学2024届高三3月份第一次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.42.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.3.以,为直径的圆的方程是A. B.C. D.4.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.5.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.6.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.7.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.8.已知数列对任意的有成立,若,则等于()A. B. C. D.9.抛物线的准线方程是,则实数()A. B. C. D.10.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为()A. B. C. D.11.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()A. B. C. D.12.已知函数,当时,的取值范围为,则实数m的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.14.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)15.记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.16.在中,,,,则________,的面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.18.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.19.(12分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.20.(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?男女总计合格不合格总计(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.22.(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.2、C【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.3、A【解析】
设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.4、C【解析】
利用先求出,然后计算出结果.【详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.5、B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.6、D【解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.7、C【解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.8、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.9、C【解析】
根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.10、C【解析】
利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,,由,与相似,所以,即,又因为,所以,,所以,即,,所以双曲线C的渐近线方程为.故选:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。11、A【解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.12、C【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,,令,则;,则,∴函数在单调递增,在单调递减.∴函数在处取得极大值为,∴时,的取值范围为,∴又当时,令,则,即,∴综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,,由于与的等差中项为,则,则,,,,,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.14、5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。15、【解析】试题分析:显然,又,①当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而②当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是.考点:不等式、简单线性规划.16、【解析】
利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【详解】(1)若,则,依题意,故;(2)因为,故;若,即时,,符合题意;若,即时,,解得;综上所述,实数的取值范围为.【点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.18、(1),;(2)【解析】
(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.19、见解析【解析】
(1)当时,函数,其定义域为,则,设,,易知函数在上单调递增,且,所以当时,,即;当时,,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值.(2)由题可得函数的定义域为,,设,,显然函数在上单调递增,当时,,,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,,,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,,,因为,所以,,又,所以函数在内有一个零点,所以函数有且仅有一个零点.综上,函数有且仅有一个零点.20、(Ⅰ)填表见解析,有95%以上的把握认为“性别”与“问卷结果”有关;(Ⅱ)分布列见解析,【解析】
(Ⅰ)根据茎叶图填写列联表,计算得到答案.(Ⅱ),计算,,,得到分布列,再计算数学期望得到答案.【详解】(Ⅰ)根据茎叶图可得:男女总计合格101626不合格10414总计202040,故有95%以上的把握认为“性别”与“问卷结果””有关.(Ⅱ)从茎叶图可知,成绩在60分以下(不含60分)的男女学生人数分别是4人和2人,从中任意选2人,基本事件总数为,,,,012.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的综合应用能力.21、(1)(2)【解析】
(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,,,由,根据正弦定理和余弦定理得.化简整理得.由勾股定理逆定理得.(2)设,,由(1)的结论知.在中,,由,所以.在中,,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雇人做课程设计
- 隔膜阀课程设计
- 2024土地转包合同书
- 防盗窗系统课程设计
- 2024个人汽车出租合同范本及注意事项(合同协议范本)
- 防火防爆的课程设计
- 防火减灾教育课程设计
- 2024合同续签注意事项
- 2024旅行社合作合同范本
- 2024合同模板抵押借款合同范本
- 《人工智能基础》课件-6.人类与人工智能如何和平相处
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
- 云南省保山市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
- 江苏省镇江市2024年中考数学试卷【附参考答案】
- 在奉献中成就精彩人生 课件-2024-2025学年统编版道德与法治七年级上册
- 邮轮运营管理 课件 第七章 邮轮安全管理的全面解析
- 2024新教科版一年级科学上册第二单元《我们自己》全部课件
- 公园保洁服务投标方案
- 2024年秋新人教版九年级上册化学教学课件 第七单元 课题1 燃料的燃烧(第二课时)
- 2024年司法考试历年证据法试题
- 农作物病虫害防治的社会经济效益分析考核试卷
评论
0/150
提交评论