版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市天镇县张西河乡中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则(
)A.2
B.
C.1
D.1或2参考答案:C试题分析:∵,∴,∴,∴,故选C.考点:1、复数运算;2、复数相等的应用.2.若,,,则A.
B.
C.
D.参考答案:3.已知,则函数有(
)A.最小值6
B.最大值6
C.最小值
D.最大值参考答案:A4.若互不相等的实数a,b,c成等差数列,ca,ab,bc成等比数列,且(
)
A.-8
B.4
C.-4
D.8参考答案:答案:D5.已知函数,且),则“f(x)在(3,+∞)上是单调函数”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:C【分析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.6.已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2} B.{x|0≤x≤3} C.{x|1≤x≤2} D.{x|1≤x≤3}参考答案:D【考点】指、对数不等式的解法.【分析】由已知中函数f(x)=是一个分段函数,故可以将不等式f(x﹣1)≤0分类讨论,分x﹣1≥1和x﹣1<1两种情况,分别进行讨论,综合讨论结果,即可得到答案.【解答】解:当x﹣1≥1,即x≥2时,f(x﹣1)≤0?2x﹣2﹣2≤0,解得x≤3,∴2≤x≤3;当x﹣1<1,即x<2时,f(x﹣1)≤0?22﹣x﹣2≤0,解得x≥1,∴1≤x<2.综上,不等式f(x﹣1)≤0的解集为{x|1≤x≤3}.故选:D.【点评】本题考查的知识点是分段函数的解析式,及不等式的解法,其中根据分段函数分段处理的原则,对不等式f(x+2)≤3的变形进行分类讨论,是解答本题的关键.7.等比数列中,,函数,则=(
)
A.
B.
C.
D.参考答案:C8.已知向量满足,,,则=(
)A.0 B.2 C. D.参考答案:D【分析】直接利用向量的模的公式求解.【详解】由题得.故选:D【点睛】本题主要考查向量的模的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.某四棱锥的三视图如图所示,则该四棱锥的侧面积是A.27
B.30C.32
D.36参考答案:A考点:空间几何体的表面积与体积空间几何体的三视图与直观图该四棱锥的底面是边长为3的正方形,
侧面是:两个直角边长为3,4的直角三角形,
两个直角边长为3,5的直角三角形,
所以该四棱锥的侧面积是:10.△ABC的三边满足a2+b2=c2-ab,则此三角形的最大的内角为A.150°
B.135°C.120°
D.60°
参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.集合,
集合,若集合构成的图形的面积为;,则实数a的值为
。参考答案:
12.已知集,,则集合所表示图形的面积是 参考答案:13.给出下列5个命题:①是函数在区间(,4]上为单调减函数的充要条件;②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有;③函数与它的反函数的图象若相交,则交点必在直线y=x上;④己知函数在(O,1)上满足,,贝U;⑤函数.,,/为虚数单位)的最小值为2其中所有真命题的代号是_____________________参考答案:②④.略14.已知等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,则的值为
.参考答案:2考点:等比数列的性质;等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,可得(a1+2d)2=a1(a1+6d),利用d≠0,可得a1=2d,即可求出的值.解答: 解:∵等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,∴(a1+2d)2=a1(a1+6d),∵d≠0,∴a1=2d,∴=2,故答案为:2.点评:本题考查等差数列的通项,考查等比数列的性质,比较基础.15.已知是平面上两个互相垂直的单位向量,且,则的最大值为
参考答案:516.参考答案:6417.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},且A∪B={-2,1,5},A∩B={-2},则p+q+r=________.参考答案:-14解析:因为A∩B={-2},所以-2∈A且-2∈B,将x=-2代入x2-px-2=0,得p=-1,所以A={1,-2},因为A∪B={-2,1,5},A∩B={-2},所以B={-2,5},所以q=-[(-2)+5]=-3,r=(-2)×5=-10,所以p+q+r=-14.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。参考答案:解:(1)根据条件可知椭圆的焦点在x轴,且故所求方程为即
………………3分(2)假设存在点M符合题意,设AB:代入得:
………………4分则
………………6分……10分要使上式与K无关,则有,解得,存在点满足题意。19.(14分)在四棱锥P﹣ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.参考答案:【考点】直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)利用线面垂直的性质可证AP⊥CD,又ABCD为矩形,AD⊥CD,利用线面垂直的判定定理可证CD⊥平面PAD,利用面面垂直的判定可证平面PAD⊥平面ABCD.(2)连接AC,BD交于点O,连接OE,OF,由ABCD为矩形,O点为AC中点,可证OE∥PA,进而可证OE∥平面PAD,同理可得:OF∥平面PAD,通过证明平面OEF∥平面PAD,即可证明EF∥平面PAD.【解答】证明:(1)∵AP⊥平面PCD,CD?平面PCD,∴AP⊥CD,∵ABCD为矩形,∴AD⊥CD,…2分又∵AP∩AD=A,AP?平面PAD,AD?平面PAD,∴CD⊥平面PAD,…4分∵CD?平面ABCD,∴平面PAD⊥平面ABCD…6分(2)连接AC,BD交于点O,连接OE,OF,∵ABCD为矩形,∴O点为AC中点,∵E为PC中点,∴OE∥PA,∵OE?平面PAD,PA?平面PAD,∴OE∥平面PAD,…8分同理可得:OF∥平面PAD,…10分∵OE∩OF=O,∴平面OEF∥平面PAD,…12分∵EF?平面OEF,∴EF∥平面PAD…14分【点评】本题主要考查了线面垂直的判定和性质,面面垂直的判定,线面平行的判定与面面平行的性质的综合应用,考查了空间想象能力和推理论证能力,属于中档题.20.确定所有正整数n,使方程xn+(2+x)n+(2-x)n=0有整数解.参考答案:解析:显然,n只能为奇数.当n=1时,x=-4.当n为不小于3的奇数时,方程左边是首项系数为1的非负整系数多项式,常数项是2n+1,所以它的整数解只能具有-2t的形式,其中t为非负整数.若t=0,则x=-1,它不是方程的解;若t=1,则x=-2,也不是方程的解;当t≥2时,方程左边=2n[-2n(t-1)+(1-2t-1)n+(1+2t-1)n],而-2n(t-1)+(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器人课件-机器人控制
- 【物理课件】阿基米的原理课件
- 《情商训练》课件
- 《企业安全知识演讲》课件
- 单位管理制度展示合集【人事管理篇】十篇
- 单位管理制度展示大全【人力资源管理】十篇
- 丰田改善内部课件.图
- 单位管理制度品读选集【员工管理篇】十篇
- 2024年汽车销售工作计划书(34篇)
- 食品安全监管基础与风险防控课件
- 江苏省宿迁市沭阳县2023-2024学年八年级上学期期末英语试题
- 安全隐患大排查大整治专项行动方案
- 蓝军战略课件
- 科学计算语言Julia及MWORKS实践 课件8 - 基本数据类型
- 湖北省黄冈市2023-2024学年高一上学期期末考试化学试题(含答案)
- 物流公司安全生产监督检查管理制度
- DB22T 277-2011 建筑电气防火检验规程
- DB52T 1696-2022 口腔综合治疗台用水卫生管理规范
- 2025届上海市复旦附中浦东分校物理高二上期末教学质量检测试题含解析
- 快乐读书吧:童年(专项训练)-2023-2024学年六年级语文上册(统编版)(含答案)
- 2023-2024学年广东省广州市海珠区九年级(上)期末英语试卷
评论
0/150
提交评论