湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析_第1页
湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析_第2页
湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析_第3页
湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析_第4页
湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市湘氮实业有限公司子弟中学高三数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在平面直角坐标系中,由x轴的正半轴、y轴的正半轴、曲线以及该曲线在处的切线所围成图形的面积是(

)A.

B.

C.

D.参考答案:2.设变量满足约束条件,则目标函数的最大值为()A.-3

B.2

C.4

D.5参考答案:C3.若三棱锥的所有顶点都在球的球面上,⊥平面,,,,则球的表面积为

)A.

B.

C.

D.

参考答案:D略4.若是定义在上的函数,对任意的实数,都有和的值是

A.2010

B.2011

C.2012

D.2013参考答案:C5.已知集合;,则中所含元素的个数为()A.

B.

C.

D.参考答案:D6.若是幂函数,且满足,则=A.

B.

C.2

D.4参考答案:B略7.已知为平行四边形,若向量,,则向量为(A)

(B)

(C)

(D)

参考答案:C略8.将函数的图象向右平移个单位长度得到图象,若的一条对称轴是直线,则的一个可能取值是

A.

B.

C.

D.参考答案:A9.已知集合,,则(

)A.(-1,2)

B.(1,2)

C.(0,2)

D.(-1,1)参考答案:C10.已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1参考答案:B【考点】9T:数量积判断两个平面向量的垂直关系.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.已知实数a,b满足等式下列五个关系式

①0<b<a

②a<b<0

③0<a<b

④b<a<0

⑤a=b其中不可能成立的关系式有_______________.参考答案:答案:③④12.已知函数的值为

_______参考答案:13.若某程序框图如图所示,则该程序运行后输出的值是

.参考答案:略14.如图,有8个村庄分别用表示.某人从A1出发,按箭头所示方向(不可逆行)可以选择任意一条路径走向其他某个村庄,那么他从A1出发,按图中所示方向到达A8(每个村庄至多经过一次)有________种不同的走法.

参考答案:21略15.已知数列{an}为等差数列,Sn为其前n项和,若S9=27,则a2﹣3a4等于

.参考答案:﹣6【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】在等差数列{an}中,由S9=27求得a5,利用a4﹣a2=2(a5﹣a4)可求解a2﹣3a4的值.【解答】解:因为数列{an}为等差数列,且Sn为其前n项和,由S9=27,得9a5=27,所以a5=3.又在等差数列{an}中,a4﹣a2=2(a5﹣a4),所以a2﹣3a4=﹣2a5=﹣6.故答案为﹣6.【点评】本题考查了等差数列的前n项和,考查了等差数列的性质,考查了学生的灵活变形能力,是基础题.16.已知等差数列的前n项和为,若,则公差___________.参考答案:3略17.(x﹣2)(x﹣1)5的展开式中所有项的系数和等于

.参考答案:0考点:二项式系数的性质.专题:二项式定理.分析:令x=1,即可得到展开式中所有项的系数之和.解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.故答案为:0.点评:本题考查了利用赋值法求二项展开式系数的应用问题,是基础题目.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图1,在四棱锥P﹣ABCD中,PA⊥底面ABCD,面ABCD为正方形,E为侧棱PD上一点,F为AB上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体PBFC的体积;(Ⅱ)证明:AE∥平面PFC;(Ⅲ)证明:平面PFC⊥平面PCD.参考答案:【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(I)利用左视图可得F为AB的中点,即可得到三角形BFC的面积,由PA⊥平面ABCD,可知PA是四面体PBFC的底面BFC上的高,利用三棱锥的体积计算公式即可得到;(II)利用三角形的中位线定理即可得到EQ∥CD,.再利用底面正方形的性质可得AF∥CD,,利用平行四边形的判定和性质定理即可得到AE∥FQ,利用线面平行的判定定理即可证明结论;(III)利用线面垂直的性质定理和判定定理即可得到CD⊥平面PAD,从而得到CD⊥AE,由等腰三角形的性质可得AE⊥PD,利用线面垂直的判定定理即可得到AE⊥平面PCD,而FQ∥AE,可得FQ⊥平面PCD,利用面面垂直的判定定理即可证明结论.【解答】(Ⅰ)解:由左视图可得F为AB的中点,∴△BFC的面积为.∵PA⊥平面ABCD,∴四面体PBFC的体积为=.(Ⅱ)证明:取PC中点Q,连接EQ,FQ.由正(主)视图可得E为PD的中点,∴EQ∥CD,.又∵AF∥CD,,∴AF∥EQ,AF=EQ.∴四边形AFQE为平行四边形,∴AE∥FQ.∵AE?平面PFC,FQ?平面PFC,∴直线AE∥平面PFC.(Ⅲ)证明:∵PA⊥平面ABCD,∴PA⊥CD.∵平面ABCD为正方形,∴AD⊥CD.∴CD⊥平面PAD.∵AE?平面PAD,∴CD⊥AE.∵PA=AD,E为PD中点,∴AE⊥PD.∴AE⊥平面PCD.∵AE∥FQ,∴FQ⊥平面PCD.∵FQ?平面PFC,∴平面PFC⊥平面PCD.【点评】正确理解三视图,熟练掌握三角形BFC的面积、三棱锥的体积计算公式、三角形的中位线定理、正方形的性质、平行四边形的判定和性质定理、线面平行的判定定理、线面垂直的性质定理和判定定理、等腰三角形的性质、面面垂直的判定定理是解题的关键.19.将圆每一点的,横坐标保持不变,纵坐标变为原来的2倍,得到曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线:与C的交点为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求线段的中点且与垂直的直线的极坐标方程.参考答案:略20.已知函数f(x)=.(1)若函数f(x)在区间(a,a+)(a>0)上存在极值点,求实数a的取值范围;(2)当x≥1时,不等式f(x)≥恒成立,求实数k的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的极值.【分析】(1)求导数,确定函数f(x)在x=1处取得极大值,根据函数在区间(a,a+)(a>0)上存在极值点,可得,即可求实数a的取值范围;(2)当x≥1时,分离参数,构造,证明g(x)在[1,+∞)上是单调递增,所以[g(x)]min=g(1)=2,即可求实数k的取值范围.【解答】解:(1)函数f(x)定义域为(0,+∞),,由f′(x)=0?x=1,当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,则f(x)在(0,1)上单增,在(1,+∞)上单减,所以函数f(x)在x=1处取得唯一的极值.由题意得,故所求实数a的取值范围为(2)当x≥1时,不等式.令,由题意,k≤g(x)在[1,+∞)恒成立.令h(x)=x﹣lnx(x≥1),则,当且仅当x=1时取等号.所以h(x)=x﹣lnx在[1,+∞)上单调递增,h(x)≥h(1)=1>0因此,则g(x)在[1,+∞)上单调递增,g(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论