河南省开封市城关镇中学2022年高二数学文摸底试卷含解析_第1页
河南省开封市城关镇中学2022年高二数学文摸底试卷含解析_第2页
河南省开封市城关镇中学2022年高二数学文摸底试卷含解析_第3页
河南省开封市城关镇中学2022年高二数学文摸底试卷含解析_第4页
河南省开封市城关镇中学2022年高二数学文摸底试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省开封市城关镇中学2022年高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以A1,A2,A3表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B表示由乙罐取出的球是红球的事件,下列结论中不正确的是(

)A.事件B与事件A1不相互独立

B.A1,A2,A3是两两互斥的事件C.

D.参考答案:D由题意A1,A2,A3是两两互斥事件,,,,,而.所以D不正确.故选:D.

2.已知等差数列{an}的前n项和为Sn且满足S17>0,S18<0,则中最大的项为(

)A. B. C. D.参考答案:D【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】由题意可得a9>0,a10<0,由此可知>0,>0,…,<0,<0,…,<0,即可得出答案.【解答】解:∵等差数列{an}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0

∴a10+a9<0,a9>0,∴a10<0,∴等差数列{an}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S1,S2,…,S17为正,S18,S19,…为负,∴>0,>0,…,<0,<0,…,<0,又∵S1<S2<…<S9,a1>a2>…>a9,∴中最大的项为故选D【点评】本题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,属中档题.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种 B.70种 C.75种 D.150种参考答案:C【考点】D9:排列、组合及简单计数问题;D8:排列、组合的实际应用.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选C.4.下列结论中正确的是

)A.导数为零的点一定是极值点B.如果在附近的左侧右侧那么是极大值C.如果在附近的左侧右侧那么是极小值D.如果在附近的左侧右侧那么是极大值参考答案:B略5.已知两点、,且是与的等差中项,则动点的轨迹方程是(

A. B. C. D.参考答案:C略6.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为()A. B. C. D.参考答案:D7.观察式子:,,,,则可归纳出式子为()A.

B.C.

D.参考答案:C由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母可知,选C.8.

把89化为五进制数,则此数为(

)A.322(5)

B.323(5)

C.324(5)

D.325(5)参考答案:C9.全集,,,则

)A.

B.

C.

D.参考答案:B10.定义在(0,+∞)上的可导函数f(x)满足f′(x)·x<f(x),且f(2)=0,则的解集为()A.(0,2)

B.(0,2)∪(2,+∞)

C.(2,+∞)

D.?参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知的值等于

.参考答案:012.如图所示,在半径为1的半圆内放置一个边长为的正方形ABCD,向半圆内任投一点,则点落在正方形内的概率为.参考答案:【考点】几何概型.【专题】计算题;概率与统计.【分析】由题意,以面积为测度,可得点落在正方形内的概率.【解答】解:由题意,以面积为测度,可得点落在正方形内的概率P==.故答案为:.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.13.y=的最小值是__________.参考答案:.5略14.给出下列四个不等式:

①;

②;

③;

④.其中能使成立的充分条件有_________.(请写出所有符合题意的序号)参考答案:略15.定义在上的偶函数满足,且在上是增函数,下面是关于的判断:①

②在[0,1]上是增函数;③的图像关于直线对称④关于点P()对称

.其中正确的判断是____

参考答案:①③④16.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数是____________.参考答案:4考点:空间几何体的三视图与直观图试题解析:第4个不行,因为等边三角形的边与高不等,所以正视图和侧视图不相同。其余4个图都可以做俯视图。故答案为:417.经过点、的直线的斜率等于1,则m的值为__________.参考答案:1经过点、的直线斜率为,∴,解得:.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)求b的值;(2).参考答案:(1)因为,所以,,所以.

……6分(2)因为,所以由正弦定理得:

所以,.

……12分19.(14分)已知数列{an}的前n项和为Sn,且Sn+2=2an,且数列{bn}满足b1=1,bn+1=bn+2.(1)求数列{an},{bn}的通项公式;(2)设cn=an+bn,求数列{cn}的前2n项和T2n;(3)求数列{an?bn}的前n项和Rn.参考答案:【考点】数列的求和.【专题】综合题;分类讨论;转化思想;数学模型法;等差数列与等比数列.【分析】(1)由Sn+2=2an,当n≥2时,Sn﹣1+2=2an﹣1,可得an=2an﹣1.当n=1时,a1+2=2a1,解得a1.利用等比数列的通项公式可得an.利用等差数列的通项公式可得bn.(2)由cn=an+bn,当n=2k(k∈N*)时,cn=b2k=2n﹣1;当n=2k﹣1(k∈N*)时,cn=a2k=2n.可得数列{cn}的前2n项和T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n).(3)an?bn=(2n﹣1)?2n.利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵Sn+2=2an,∴当n≥2时,Sn﹣1+2=2an﹣1,可得an=2an﹣2an﹣1,化为an=2an﹣1.当n=1时,a1+2=2a1,解得a1=2.∴数列{an}是等比数列,首项与公比为2,∴an=2n.∵数列{bn}满足b1=1,bn+1=bn+2.∴数列{bn}是等差数列,首项为1,公差为2.∴bn=1+2(n﹣1)=2n﹣1.(2)由cn=an+bn,当n=2k(k∈N*)时,cn=c2k=b2k=2n﹣1;当n=2k﹣1(k∈N*)时,cn=a2k=2n.∴数列{cn}的前2n项和T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n)=(21+23+…+22n﹣1)+[(2×2﹣1)+(2×4﹣1)+…+(4n﹣1)]==+2n2+n.(3)an?bn=(2n﹣1)?2n.数列{an?bn}的前n项和Rn=2+3×22+5×23+…+(2n﹣1)?2n.2Rn=22+3×23+…+(2n﹣3)?2n+(2n﹣1)?2n+1,∴﹣Rn=2+2×(22+23+…+2n)﹣(2n﹣1)?2n+1=﹣2﹣(2n﹣1)?2n+1=(3﹣2n)×2n+1﹣6,∴Rn=(2n﹣3)×2n+1+6.【点评】本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式、递推关系,考查了分类讨论方法、推理能力与计算能力,属于难题.20.如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.(1)求证:平面A′MN⊥平面A′BF;(2)求二面角E﹣A′F﹣B的余弦值.参考答案:【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(1)如图所示,取BC的中点G,连接MG,则MG⊥EF,利用面面与线面垂直的性质与判定定理可得:MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.不妨设BC=4.只要证明平面法向量的夹角为直角即可证明平面A′MN⊥平面A′BF.(2)利用两个平面的法向量的夹角即可得出.【解答】(1)证明:如图所示,取BC的中点G,连接MG,则MG⊥EF,∵平面A′EF⊥平面EFCB,平面A′EF∩平面EFCB=EF,∴MG⊥平面A′EF,∴MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.不妨设BC=4.M(0,0,0),A′(0,0,),N(﹣1,,0),B(2,,0),F(﹣1,0,0).=(0,0,),=(﹣1,,0),=(1,0,),=(3,,0).设平面A′MN的法向量为=(x,y,z),则,即,取=.同理可得平面A′BF的法向量=.∵=3﹣3+0=0,∴,∴平面A′MN⊥平面A′BF.(2)解:由(1)可得平面A′BF的法向量=.取平面EA′F的法向量=(0,1,0).则cos===,由图可知:二面角E﹣A′F﹣B的平面角为锐角,∴二面角E﹣A′F﹣B的平面角的余弦值为.21.如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,(1)求证:BC⊥PA(2)求点C到平面PAB的距离参考答案:证明(1)E为BC的中点,又为正三棱锥BC⊥PA(2)设点C到平面PAB的距离为。则略22.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(1)求取出的两个球上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论