




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海齐贤学校高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.1参考答案:B【分析】首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦×矢+矢2),弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角,半径为4米的弧田,则按上述经验公式计算所得弧田的面积约是
平方米(注:)A.6
B.9
C.10
D.12参考答案:B由题意得,圆心到弦的距离为,所以矢为2;又弦长为,∴弧田的面积为.选B.
3.下列说法的错误的是()A.经过定点的倾斜角不为90°的直线的方程都可以表示为B.经过定点的倾斜角不为90°的直线的方程都可以表示为C.不经过原点的直线的方程都可以表示为D.经过任意两个不同的点、直线的方程都可以表示为参考答案:C【分析】由点斜式方程可判断A;由直线的斜截式可判断B;讨论直线的截距是否为0,可判断C;由两点式的直线方程可判断D.【详解】经过定点P(x0,y0)的倾斜角不为90°的直线的方程都可以表示为y-y0=k(x-x0),故A正确;经过定点A(0,b)的倾斜角不为90°的直线的方程都可以表示为y=kx+b,故B正确;不经过原点的直线的方程不一定都可以表示为,比如x=a或y=b,故C错误;过任意两个不同的点P1(x1,y1)、P2(x2,y2)直线的方程都可以表示为:(y-y1)(x2-x1)=(x-x1)(y2-y1),故D正确.故选:C.【点睛】本题考查直线方程的适用范围,注意直线的斜率是否存在,以及截距的定义,考查判断能力和推理能力,是基础题.4.已知集合A={x|0≤x≤3},B={xR|-2<x<2}则A∩B?(
)A.{0,1} B.{1} C.[0,1] D.[0,2)参考答案:A【分析】可解出集合A,然后进行交集的运算即可.【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【点睛】本题考查交集的运算,是基础题,注意A中x.5.一个等比数列的前n项和为48,前2n项和为60,则前3n项和为(
)A、63
B、108
C、75
D、83参考答案:A6.设集合A={x|1<x<2},B={x|x<a}满足AB,则实数a的取值范围是
(
)
A.
B.
C.
D.参考答案:A7.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.1 C. D.2参考答案:C【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为是一平放的直三棱柱,正视图为其底面,高为2.利用柱体体积公式计算即可.【解答】解:由三视图可知该几何体为是一平放的直三棱柱,正视图为其底面,高为2V=Sh==2.故选D.8.在平面直角坐标系中,已知点分别为轴,轴上一点,且,若点,则的取值范围是(
)A. B. C.
D.参考答案:D考点:平面向量的坐标运算;三角函数的最值.【方法点晴】本题主要考查了平面向量的坐标表示及其运算、三角函数的图象与性质的应用,属于中档试题,本题解答的关键在于利用向量的坐标运算表示得出,在设出,得出,即可利用三角的图象与性质求解取值范围,着重考查了学生分析问题和解答问题的能力及其推论运算能力.9.计算下列几个式子,①,②2(sin35°cos25°+sin55°cos65°),③
,④,结果为的是A.①②
B.①③
C.①②③
D.①②③④
参考答案:C10.设为偶函数,且在上是增函数,则、、的大小顺序是(
)A.
B.C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.
函数的定义域为______________________参考答案:12.如图,在边长为1的正方体中ABCD﹣A1B1C1D1,P、Q分别是线段BD、C1C上的动点,则|PQ|的最小值是
.参考答案:13.集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为
.参考答案:{0,1,2,3}【考点】一元二次不等式的解法;集合的表示法.【分析】利用条件直接求解即可.【解答】解:集合A={x|x2﹣3x﹣4<0,x∈Z}={x|﹣1<x<4,x∈Z}={0,1,2,3}.故答案为:{0,1,2,3}.14.若非零向量满足,则夹角的余弦值为_______.参考答案:略15.已知幂函数的图象过点,则____________.参考答案:略16.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是
.参考答案:(﹣3,+∞)
【考点】函数恒成立问题.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,?对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,?对任意的x∈[1,3],x2+(t﹣1)x+4>0?(t﹣1)x>﹣x2﹣4?t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.17.已知数列{an}满足,则数列{an}的通项公式an=
,数列{an}的n项和Sn= .参考答案:
因为,所以,可得数列是以2为首项,以3为公差的等差数列,所以数列的n项和,
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.计算求值:(1)
(2)若,求的值
参考答案:解:(1)原式=(0.4
-1分
=0.4
-------------------------2分
-----------4分
=10.
----------------6
分
(2)∵
∴
∴
--------------12分
19.(12分)已知△ABC的角A、B、C所对的边分别是a,b,c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).
(1)若m∥n,判断△ABC的形状,并说明理由;
(2)若m⊥p,边长c=2,∠C=,求△ABC的面积.参考答案:(1)解:∵m∥n,∴asinA=bsinB
即a=
∴△ABC为等腰三角形………………6分(2)解:由m·p=0,即a(b-2)+b(a-2)=0
∴a+b=ab……………8分由余弦定理可知4=a2+b2-ab=(a+b)2-3ab
ab=4…………………4分∴S=absinC=…………略20.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.参考答案:【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国即时配送行业市场深度调研分析及投资前景研究预测报告
- 公路环境保护培训课件
- 医保科培训课件
- 可行性研究报告范文案例
- 道桥专用防水卷材项目投资可行性研究分析报告(2024-2030版)
- 税务师网课价格
- 供应商考察报告范文怎么写
- 中国自行车头盔行业市场调查研究及投资前景预测报告
- 2025年 杭州市建德市资产经营投资有限公司招聘考试笔试试题附答案
- 拍卖会策划方案范文
- 2024年-2025年农作物植保员职业技能考试题及答案
- (小升初分班考)2023年小升初英语专题训练:阅读理解(人与自然)(含答案解析)人教PEP版
- 拍卖合同模板三篇
- 2023北京西城区初二期末(下)物理试卷及答案
- 2023-2024学年山东省烟台市高一下学期期中生物试题(解析版)
- 浅谈机械设计制造及其自动化在飞机发动机中的应用
- 2024年西北工业大学附中丘成桐少年班初试数学试题真题(含答案详解)
- 北京东城五中2025届高三(最后冲刺)历史试卷含解析
- 2023-2024学年浙江省衢州市开化县七年级(下)期中数学试卷(含答案)
- 房产自愿转让协议书
- 人教版必修二研究与实践了解车用能源化学
评论
0/150
提交评论