版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2024年四川省成都市青白江区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数是无理数的是()A.﹣2 B.1 C.π D.2.(4分)近年来,青白江加快打造国际供应链经济重要承载区,目前全区共有白酒存储园区12个,货值达140亿元.将数据“329万”用科学记数法表示为()A.0.329×107 B.3.29×106 C.32.9×105 D.3.29×1053.(4分)下列运算中正确的是()A.x2y+2yx2=3x2y B.3y2+4y3=7y5 C.a+a=a2 D.2x﹣x=24.(4分)从1,2,3这三个数中任取两数,分别记为m、n(m,n)在反比例函数图象上的概率为()A. B. C. D.5.(4分)某公司统计了今年3月销售部10名员工的销售某种商品的业绩如表:每人销售量/件数510250210120人数(人)1252则这10名销售人员在该月销售量的中位数和众数分别为()A.250,230 B.250,210 C.210,230 D.210,2106.(4分)如图,点D、E分别在AC、AB上,且DE与BC不平行,可得△ADE∽△ABC.不正确的是()A.∠AED=∠C B.∠ADE=∠B C. D.7.(4分)中国古代数学著作《九章算术》第七章主要内容是“盈不足术”,其中有这样一道盈亏类问题:“今有共买羊,人出五;人出五十,适足.问人数、羊价各几何?”题目大意是:“有几个人共同购买一只羊,还差九十元;若每人出五十元,羊的价格是多少?”设有x人,羊的价格为y元()A. B. C. D.8.(4分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,交x轴于(3,0),下列说法正确的是()A.b<0 B.b2<4ac C.a+c=b D.2a﹣b=0二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:4x2y﹣12xy=.10.(4分)反比例函数的图象在每一象限内,y的值随x值的增大而减小.11.(4分)有两个直角三角形纸板,一个含45°角,另一个含30°角,将含30°角的纸板绕顶点B逆时针旋转,当AC∥DE时,旋转角∠DBC=°.12.(4分)在平面直角坐标系中,若点A(3,2)与点B(m,﹣2),则m的值是.13.(4分)如图,在△ABC中,AB=AC,BC长为半径画弧,交AB于点B和点D,D为圆心,大于,两弧相交于点M,作射线CM交AB于点E,BE=1,则CE的长度为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:.15.(8分)“促进儿童心理健康,共同守护美好未来”.加强学生的心理健康教育上升为国家战略.国家卫生健康委举行新闻发布会,介绍我国如何从制度、服务、宣传等层面,某校开展了心理健康教育讲座.讲座前从该校七、八、九年级中随机抽取了部分学生,对学生关于心理健康知识的了解情况进行了问卷调查某校学生心理健康知识了解情况统计表分组类别人数A组不了解20B组了解少aC组基本了解40D组非常了解b根据图表中提供的信息,解答下列问题.(1)直接写出答案:a=,b=,m=;(2)D组扇形所对的圆心角的度数是多少?(3)从D组的甲、乙、丙、丁4位同学中,随机抽取两位同学进行心理健康知识宣讲,请用列表法或画树状图法求出丁同学未被抽中的概率.16.(8分)如图1,机翼是飞机的重要部件之一,一般分为左右两个翼面,机翼的一些部位(主要是前缘和后缘)可以活动,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的.如图2是某种型号飞机的机翼形状,图中,MC∥ND∥BE,∠BEC=90°,请你根据图中的数据计算AB的长度.(参考数据:≈1.41,≈1.73,结果保留小数点后一位)17.(10分)在菱形ABCD中,以边AD为直径作半圆O交边CD于点E,交对角线AC于点F.(1)证明:AF=CF;(2)当菱形的边长为5,,求AC和DE的长.18.(10分)如图,函数y=(x>0)的图象过点A(n,2)(,2n﹣3)两点.(1)求n和k的值;(2)点C是双曲线上介于点A和点B之间的一个动点,若S△AOC=6,求C点的坐标;(3)在(2)的条件下,过C点作CD∥OA,交y轴于点E,第二象限内是否存在点F,请求出点F的坐标;若不存在一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)若实数x满足x2﹣4x+y=0,则的值为.20.(4分)如图是一个正方体的展开图,如果相对面上的两个式子表示的数相等,则x+y的值为.21.(4分)如图,在平面直角坐标系中,已知⊙D经过原点O,y轴交于点A,B两点(0,2),点C为⊙D上的一点,已知∠OCA=30°.现假设可以随意在⊙D中取点.22.(4分)在边长为10的正方形ABCD中,点E为CD上一点,连接BE,连接AC'、DC'.若∠CDC'=∠DAC',且,则CE=.23.(4分)现给出以下两个定义:定义①:任意一个正整数n都可以进行这样的因数分解:n=p×q(p,q是正整数,且p≤q),在n的所有这样分解中,如果p,我们就称p×q是n的最佳分解,记为:F(n)=,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以F(12)=.定义②:如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36根据以上两个新定义,可求得F(15)=;在所有的“吉祥数”中,F(t)的最大值为.二、解答题(本大题共三个小题,共30分,答案写在答题卡上)24.(8分)某景区元宵节举办灯会,需要购买A、B两种款式的花灯.若购买A款花灯10盏和B款花灯20盏,则需900元,则需810元.(1)求每盏A款花灯和每盏B款花灯的价格;(2)若该景区需要购买A、B两种款式的花灯共200盏(两种款式的花灯均需购买),且购买B款花灯数量不超过购买A款花灯数量的,为使购买花灯的总费用最低25.(10分)如图,抛物线y=ax2+bx经过A(﹣1,1),B(2,4)两点.(1)求抛物线所对应的函数表达式;(2)若直线l:y=kx+t(k、t是常数,k≠0)与抛物线有且只有一个公共点C(1,c),求直线l所对应的函数表达式;(3)将(2)中的直线l向下平移2个单位得到直线l′,过点A的直线m:y=(r﹣1)(异于点B),过点B的直线n:y=(s+2)x﹣2s与抛物线的另一交点为E(异于点A),n的交点P在定直线l′上时,试探究直线DE是否过定点?若是,请说明理由.26.(12分)【初步感知】(1)如图1,在△ABC中,点D为AB边上一点,过点C作CF∥AB交射线DE于F,且DE=EF;【深入探究】(2)如图2,△ABC为等边三角形,点D为AC边上一点,射线BE与CA延长线交于E,点F为AB边上一点,若=n,求CE(用含n的代数式表示);【拓展应用】(3)在(2)的条件下,当AE=,F为AB中点时,将线段CF绕点C旋转得到线段CF′;若点F′到线段AC的距离为AC的长度,求
2024年四川省成都市青白江区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数是无理数的是()A.﹣2 B.1 C.π D.【解答】解:﹣2,1,﹣是有理数;π是无理数.故选:C.2.(4分)近年来,青白江加快打造国际供应链经济重要承载区,目前全区共有白酒存储园区12个,货值达140亿元.将数据“329万”用科学记数法表示为()A.0.329×107 B.3.29×106 C.32.9×105 D.3.29×105【解答】解:329万=3290000=3.29×106.故选:B.3.(4分)下列运算中正确的是()A.x2y+2yx2=3x2y B.3y2+4y3=7y5 C.a+a=a2 D.2x﹣x=2【解答】解:A、x2y+2yx8=3x2y,故此选项正确;B、3y2+4y6无法计算,故此选项错误;C、a+a=2a;D、2x﹣x=x;故选:A.4.(4分)从1,2,3这三个数中任取两数,分别记为m、n(m,n)在反比例函数图象上的概率为()A. B. C. D.【解答】解:画树状图如下,2×3=8,3×2=4,∵共有6种等可能的结果,点P在反比例函数y=,∴点(m,n)在反比例函数=,故选:B.5.(4分)某公司统计了今年3月销售部10名员工的销售某种商品的业绩如表:每人销售量/件数510250210120人数(人)1252则这10名销售人员在该月销售量的中位数和众数分别为()A.250,230 B.250,210 C.210,230 D.210,210【解答】解:这10名销售人员在该月销售量的中位数是=210,故选:D.6.(4分)如图,点D、E分别在AC、AB上,且DE与BC不平行,可得△ADE∽△ABC.不正确的是()A.∠AED=∠C B.∠ADE=∠B C. D.【解答】解:A、B中的条件,由有两组角对应相等的两个三角形相似,故A;C、=,又∠DAE=∠BAC,判定△ADE∽△ABC;D、=,两边对应成比例,不能判定△ADE∽△ABC.故选:D.7.(4分)中国古代数学著作《九章算术》第七章主要内容是“盈不足术”,其中有这样一道盈亏类问题:“今有共买羊,人出五;人出五十,适足.问人数、羊价各几何?”题目大意是:“有几个人共同购买一只羊,还差九十元;若每人出五十元,羊的价格是多少?”设有x人,羊的价格为y元()A. B. C. D.【解答】解:∵每人出五元,还差九十元,∴5x﹣y=﹣90;∵每人出五十元,刚好够,∴50x﹣y=0.∴根据题意可列方程组.故选:D.8.(4分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,交x轴于(3,0),下列说法正确的是()A.b<0 B.b2<4ac C.a+c=b D.2a﹣b=0【解答】解:如图,∵抛物线开口向下,∴a<0.又对称轴是直线x=﹣=7,∴b=﹣2a>0,故A错误.又抛物线与x轴交于两点,∴Δ=b3﹣4ac>0.∴b5>4ac,故B错误.∵对称轴是直线x=1,且抛物线过(7,∴抛物线必过点(﹣1,0).∴当x=﹣8时,y=a﹣b+c=0.∴a+c=b,故C正确.∵b=﹣2a,∴6a﹣b=2a+2a=4a<0,故D错误.故选:C.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:4x2y﹣12xy=4xy(x﹣3).【解答】解:4x2y﹣12xy=8xy(x﹣3),故答案为:4xy(x﹣4).10.(4分)反比例函数的图象在每一象限内,y的值随x值的增大而减小k>﹣3.【解答】解:∵反比例函数的图象在每一象限内,∴k+3>5,解得k>﹣3.故答案为:k>﹣3.11.(4分)有两个直角三角形纸板,一个含45°角,另一个含30°角,将含30°角的纸板绕顶点B逆时针旋转,当AC∥DE时,旋转角∠DBC=45°.【解答】解:令BD与AC的交点为M,∵AC∥DE,∴∠AMB=∠D=90°,又∵∠C=45°,∴∠DBC=90°﹣45°=45°.故答案为:45.12.(4分)在平面直角坐标系中,若点A(3,2)与点B(m,﹣2),则m的值是﹣3.【解答】解:∵点(3,2)与点(m,∴m=﹣2.故答案为:﹣3.13.(4分)如图,在△ABC中,AB=AC,BC长为半径画弧,交AB于点B和点D,D为圆心,大于,两弧相交于点M,作射线CM交AB于点E,BE=1,则CE的长度为.【解答】解:由作法得CE⊥AB于E点,∴∠AEC=90°,∵AE=5,BE=1,∴AC=AB=3+1=6,在Rt△ACE中,CE===.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:.【解答】解:(1)原式=3﹣6×=7﹣3=﹣2;(2)解①得:x>3;解②得:x≤6,故不等式组的解集为:3<x≤7.15.(8分)“促进儿童心理健康,共同守护美好未来”.加强学生的心理健康教育上升为国家战略.国家卫生健康委举行新闻发布会,介绍我国如何从制度、服务、宣传等层面,某校开展了心理健康教育讲座.讲座前从该校七、八、九年级中随机抽取了部分学生,对学生关于心理健康知识的了解情况进行了问卷调查某校学生心理健康知识了解情况统计表分组类别人数A组不了解20B组了解少aC组基本了解40D组非常了解b根据图表中提供的信息,解答下列问题.(1)直接写出答案:a=30,b=10,m=20;(2)D组扇形所对的圆心角的度数是多少?(3)从D组的甲、乙、丙、丁4位同学中,随机抽取两位同学进行心理健康知识宣讲,请用列表法或画树状图法求出丁同学未被抽中的概率.【解答】解:(1)抽取学生总数为:40÷40%=100人,B组的份数:a=100×30%=30份,D组的份数为:b=100﹣40﹣30=30份,A组所占的百分比为:故答案为:30;10(2)D组扇形所对的圆心角的度数为;(3)画树状图如下:由图可知,一共有12种等可能的结果,∴丁同学未被抽中的概率为.16.(8分)如图1,机翼是飞机的重要部件之一,一般分为左右两个翼面,机翼的一些部位(主要是前缘和后缘)可以活动,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的.如图2是某种型号飞机的机翼形状,图中,MC∥ND∥BE,∠BEC=90°,请你根据图中的数据计算AB的长度.(参考数据:≈1.41,≈1.73,结果保留小数点后一位)【解答】解:∵MC∥ND∥BE,AB∥CE,∴∠ECM=∠EBA=∠NDE=90°,∠DBE=∠NDB=30°,过点A作AF⊥CE于F,如图所示:则四边形ABEF是矩形,∴AF=BE=6,AB=EF,∵∠MCA=45°,∴∠ACF=90°﹣45°=45°,∴△AFC是等腰直角三角形,∴CF=AF=BE=6,∵∠DBE=30°,∴DE=BE=2,∴CE=CD+DE=3.8+3,∴AB=EF=CE﹣CF=3.5+2﹣3≈1答:AB的长度约为1.2米.17.(10分)在菱形ABCD中,以边AD为直径作半圆O交边CD于点E,交对角线AC于点F.(1)证明:AF=CF;(2)当菱形的边长为5,,求AC和DE的长.【解答】(1)证明:连接DF,∵AD是半圆直径,∴∠AFD=90°,∴DF⊥AC,∵四边形ABCD是菱形,∴CD=AD,∴AF=CF.(2)解:连接AE,∵∠AFD=90°,∴∠DFC=180°﹣∠AFD=90°,∵菱形ABCD的边长是5,∴AD=5,∠BAC=∠DAF,∴cos∠BAC=cos∠DAF==,∴AF=3.,由(1)知,AC=4AF,∴AC=6,∵AD是半圆直径,∴∠AED=90°,∴CEA=180°﹣90°=90°,∴∠CEA=∠CFD,∵∠DCF=∠ACE,∴△CEA∽△CFD,∴CE:CF=AC:CD,∴CE:3=6:5,∴CE=,∴DE=CD﹣CE=.18.(10分)如图,函数y=(x>0)的图象过点A(n,2)(,2n﹣3)两点.(1)求n和k的值;(2)点C是双曲线上介于点A和点B之间的一个动点,若S△AOC=6,求C点的坐标;(3)在(2)的条件下,过C点作CD∥OA,交y轴于点E,第二象限内是否存在点F,请求出点F的坐标;若不存在【解答】解:(1)∵函数y=的图象过点A(n,6n﹣3)两点,解得,故n和k的值分别为4,8;(2)∵n=4,k=7,∴点A(4,2)和B(,设直线OA的解析式为:y=mx,把A(4,4)代入y=mx,解得m=,∴直线OA的解析式为:y=x,过点C作CG⊥x轴于点G,交直线OA于点H,设C(m,)(m>4),∴H(m,),∴S△AOC=•xA=6,∴(﹣)×4=5,∴m=2或m=8(不符合题意舍去),∴C(8,4),(3)第二象限内存在点F,使得△DEF是以DE为腰的等腰直角三角形∵DE∥OA,直线OA的解析式为:y=x,∴设直线DE的解析式为:y=,∵点C(8,4)在直线DE上,∴4=,即b=3,∴直线DE的解析式为:y=x+4;当x=0时,y=3,∴E(4,3)当y=0时,x=﹣5,∴D(﹣6,0),根据题意,分两种情况进行讨论:①以DE为直角边,D为直角顶点;如图5,过F1做F1K⊥x轴于点K,可知:∠F4KD=∠DOE=90°,∵∠F1DE=90°,∴∠F1DK+∠EDO=90°,又∵∠DEO+∠EDO=90°,∴∠F6DK=∠DEO,又∵DF1=DE,∴△F1KD≌△DOE(AAS),∴F8K=DO=6,KD=OE=3,故点D到点F2的平移规律是:D向左移3个单位,向上移6个单位得点F3坐标,∵D(﹣6,0),∴F3(﹣6﹣3,3+6)即F1(﹣4,6);②以DE为直角边,E为直角顶点,将E点向左移3个单位,得F3(﹣3,9).综上所述:点F(﹣6,6)或(﹣3.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)若实数x满足x2﹣4x+y=0,则的值为.【解答】解:=•=•=,∵x2﹣3x+y=0,∴y=4x﹣x7,∴原式==,故答案为:.20.(4分)如图是一个正方体的展开图,如果相对面上的两个式子表示的数相等,则x+y的值为5.【解答】解:这是一个正方体的平面展开图,共有六个面,面“4”与面“y+a”相对.x﹣a=1,7=y+a故答案为:5.21.(4分)如图,在平面直角坐标系中,已知⊙D经过原点O,y轴交于点A,B两点(0,2),点C为⊙D上的一点,已知∠OCA=30°.现假设可以随意在⊙D中取点.【解答】解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2,∴OA=OB•tan∠ABO=OBtan30°=6×=2,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=﹣×2×7,圆的面积=5π.∴这个点取在阴影部分的概率是:.故答案为:.22.(4分)在边长为10的正方形ABCD中,点E为CD上一点,连接BE,连接AC'、DC'.若∠CDC'=∠DAC',且,则CE=.【解答】解:过C'作C'F⊥CD于F,,∵正方形ABCD边长为10,∴∠ADC=90°,AD=CD=10,∵∠CDC'=∠DAC',∠CDC'+∠ADC'=∠ADC=90°∴∠DAC'+∠ADC'=90°,即:∠AC'D=90°,∵,即AC'=2DC',由勾股定理可得:DC'2=AD2﹣AC'3,∴DC′=,解得DC′=2或﹣8,,即:DF=2C'F,同理可得:C'F=2,则DF=6,∴CF=CD﹣DF=6,由折叠可知,CE=C'E=x,由勾股定理可得:C'E2=C'F7+EF2,即:x2=(6﹣x)2+23,解得:,即:,故答案为:.23.(4分)现给出以下两个定义:定义①:任意一个正整数n都可以进行这样的因数分解:n=p×q(p,q是正整数,且p≤q),在n的所有这样分解中,如果p,我们就称p×q是n的最佳分解,记为:F(n)=,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以F(12)=.定义②:如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36根据以上两个新定义,可求得F(15)=;在所有的“吉祥数”中,F(t)的最大值为.【解答】解:(1)15=1×15=3×2,∵15﹣1>5﹣4,∴F(15)=;(2)∵t=10x+y(3≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去交换前的数的差为:10y+x﹣10x﹣y=9(y﹣x)=36,∴y﹣x=4,∵1≤x≤y≤9,∴y=8,x=5或y=8,x=5,x=2或y=5,∴t为59,48,26;∵59=3×59,∴F(59)=;∵48=1×48=3×24=3×16=4×12=2×8,∴F(48)=;∵37=1×37,∴F(37)=,∵26=3×26=2×13,∴F(26)=,∵15=6×15=3×5,∴F(15)=,∴F(t)的最大值.故答案为:;.二、解答题(本大题共三个小题,共30分,答案写在答题卡上)24.(8分)某景区元宵节举办灯会,需要购买A、B两种款式的花灯.若购买A款花灯10盏和B款花灯20盏,则需900元,则需810元.(1)求每盏A款花灯和每盏B款花灯的价格;(2)若该景区需要购买A、B两种款式的花灯共200盏(两种款式的花灯均需购买),且购买B款花灯数量不超过购买A款花灯数量的,为使购买花灯的总费用最低【解答】解:(1)设每盏A款花灯x元,每盏B款花灯y元,由题意可得,解得,答:设每盏A款花灯36元,每盏B款花灯27元;(2)解:设应购买A款花灯m盏,则应购买B款花灯(200﹣m)盏,由题意可得,,解得m≥150,设购买花灯的总费用为w元,则w=36m+27(200﹣m)=2m+5400(元),∵w是m的一次函数,k=9>0,∴当m=150时,总费用w的值最小,∴200﹣m=200﹣150=50(盏),答:为使购买花灯的总费用最低,应购买A款花灯150盏.25.(10分)如图,抛物线y=ax2+bx经过A(﹣1,1),B(2,4)两点.(1)求抛物线所对应的函数表达式;(2)若直线l:y=kx+t(k、t是常数,k≠0)与抛物线有且只有一个公共点C(1,c),求直线l所对应的函数表达式;(3)将(2)中的直线l向下平移2个单位得到直线l′,过点A的直线m:y=(r﹣1)(异于点B),过点B的直线n:y=(s+2)x﹣2s与抛物线的另一交点为E(异于点A),n的交点P在定直线l′上时,试探究直线DE是否过定点?若是,请说明理由.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2.(2)由题意,当x=1时4=1,即点C(1,则直线l的表达式为:y=k(x﹣3)+1=kx﹣k+1,∵直线l与抛物线有且只有一个公共点,则联立上述两个函数表达式得:x6=kx﹣k+1,则Δ=k2﹣2k+4=0,解得:k=7,则直线l的表达式为:y=2x﹣1.(3)由题意,直线DE是否过定点(5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中老年疾病康复治疗
- 2024培训合同协议书范本(公司与培训机构)
- 2024认定阴阳合同效力的方法
- 2024至2030年中国软质胶手环行业投资前景及策略咨询研究报告
- 2024至2030年中国高温齿轮油泵数据监测研究报告
- 2024至2030年中国风力提水机组数据监测研究报告
- 2024年熨平机项目成效分析报告
- 2024至2030年中国西装时尚肩型肩垫数据监测研究报告
- 2024年豪华电动车项目综合评估报告
- 2024至2030年中国脸谱烟缸数据监测研究报告
- 南京上元门过江通道环境影响报告书-全本公示稿
- 交通安全知识培训试题(带答案)试卷打印版
- 《习作:-即景》说课(课件)五年级上册语文部编版
- 小程序开发与运营服务合作协议
- 2024年新人教版一年级上册数学教学课件 4.7 解决问题
- 2022年版信息科技新课标《义务教育信息科技课程标准(2022年版)》解读课件
- 茶叶市场营销策略分析考核试卷
- 西安热工研究院有限公司招聘笔试题库2024
- 交通企业数据资源资产化操作指引-55正式版-WN8
- DB11T 1481-2024 生产经营单位生产安全事故应急预案评审规范
- 2024延迟退休政策详解
评论
0/150
提交评论