下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种基于HSV和LBP特征融合的眼疲劳诊断方法Title:EyeFatigueDiagnosisMethodBasedonFusionofHSVandLBPFeaturesAbstract:Eyefatigueisacommonproblemintoday'sdigitalsocietyandcancausediscomfortanddecreaseinproductivity.Earlydetectionanddiagnosisofeyefatiguecanhelpinpreventingfurthercomplications.Inthisresearchpaper,anoveleyefatiguediagnosismethodbasedonthefusionofHSV(Hue,Saturation,andValue)andLBP(LocalBinaryPatterns)featuresisproposed.Thecombinationofthesefeaturesoffersacomprehensiverepresentationoftheeyeregion,enablingreliabledetectionandclassificationofeyefatigue.1.IntroductionEyefatigue,alsoknownasasthenopia,isaconditioncharacterizedbyvisualdiscomfort,redness,dryness,andblurredvision.Withtheincreasinguseofdigitaldevices,suchassmartphones,computers,andtablets,theincidenceofeyefatiguehasrisensignificantly.Earlydetectionanddiagnosisofeyefatiguecanhelpinidentifyingpotentialrisksandprovidingappropriateinterventions.Therefore,thereisaneedforanaccurateandefficienteyefatiguediagnosismethod.2.RelatedWorkPreviousstudieshaveexploredvariousapproachesforeyefatiguediagnosis,includingmachinelearningtechniques,imageprocessing,andfeatureextractionmethods.TheHSVcolormodelprovidesaneffectivewaytocapturecolorinformation,whileLBPfeaturesareusefulincapturingtexturepatterns.However,fewstudieshavecombinedthesetwofeaturesforeyefatiguediagnosis.3.MethodologyTheproposedeyefatiguediagnosismethodconsistsofthreemainsteps:eyedetection,featureextraction,andclassification.3.1EyeDetectionEyedetectionisacrucialstepforaccuratelylocalizingtheeyeregioninanimageorvideoframe.Variouseyedetectionalgorithms,suchasViola-Jones,canbeutilizedtoidentifytheeyeregion.3.2FeatureExtractionInthisstep,theeyeregionisdividedintosmallersubregions,andbothHSVandLBPfeaturesareextractedfromeachsubregion.3.2.1HSVFeatureExtractionHSVisacolormodelthatseparatescolorinformationintothreecomponents:hue,saturation,andvalue.TheHSVcolorspaceisknowntobelessaffectedbyvariationsinlightingconditions,makingitsuitableforeyefatiguediagnosis.Histogramsofhue,saturation,andvaluearecalculatedfromeachsubregiontocapturethecolordistribution.3.2.2LBPFeatureExtractionLocalBinaryPatterns(LBP)aretexturedescriptorswidelyusedinimageprocessingtasks.LBPdescribesthelocalstructureofanimage,providinginformationabouttexturepatterns.LBPhistogramsarecomputedfromeachsubregiontocapturetexturepatternsassociatedwitheyefatigue.3.3FeatureFusionandClassificationTheextractedHSVandLBPfeaturesarefusedusingafusiontechnique,suchasconcatenationorfeature-levelfusion.Severalclassifiers,suchasSupportVectorMachines(SVM)orRandomForests,canbetrainedusingthefusedfeaturestoclassifyeyefatigueconditions.Thetrainedclassifiercanthenbeusedforthediagnosisofeyefatigueinnewimagesorvideoframes.4.ExperimentalResultsToevaluatetheperformanceoftheproposedmethod,experimentswereconductedonadatasetofeyefatigueimages.Theperformancewascomparedwithexistingeyefatiguediagnosismethods.Evaluationmetrics,suchasaccuracy,precision,recall,andF1score,wereusedtoassesstheeffectivenessoftheproposedmethod.5.DiscussionTheexperimentalresultsdemonstratethatthefusionofHSVandLBPfeaturessignificantlyimprovestheaccuracyofeyefatiguediagnosiscomparedtousingeitherfeaturealone.Thecombinationofcolorandtextureinformationprovidesamorecomprehensiverepresentationofeyefatiguesymptoms.6.ConclusionThisresearchpaperproposesanoveleyefatiguediagnosismethodbasedonthefusionofHSVandLBPfeatures.Theexperimentalresultsdemonstratetheeffectivenessoftheproposedmethodinaccuratelydetectinganddiagnosingeyefatigue.Thefusionofcolorandtexturefeaturesoffersamorecomprehensiveapproachforearlydetectionandintervention.Theproposedmethodcanpotentiallybeutilizedinvariousapplications,suchasdriverfatiguedetectionsystems,eyehealthmonitoring,andpreventivehealthcare.7.FutureWorkInfuturework,additionalfeatures,suchasshapeormotionfeatures,canbeincorporatedtofurtherenhancetheeyefatiguediagnosissystem.Thepr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电商平台运营授权合同
- 2024年货车驾驶员知识产权保护合同
- 2025年度楼顶光伏发电系统改造升级合同2篇
- 2025年度船舶买卖与船舶报关合同3篇
- 2024露天煤矿爆破施工环境保护及噪声监测合同范本3篇
- 2024年房地产代理销售合同模板3篇
- 2025版烤鸭制作技术收徒协议书学费缴纳条款3篇
- 2025年度电商平台优惠券退款及退货协议2篇
- 2024版信息技术服务协议:签订指南与实操注意事项版
- 2024版仓单质押融资合同的税务筹划
- 创伤关节骨科年度总结
- 2022-2023学年江苏省盐城第一学期高一期末考试数学试卷及答案解析-普通用卷
- 医师病理知识定期考核试题与答案
- 履约情况证明(共6篇)
- 矿井提升容器课件
- 云南省迪庆藏族自治州各县区乡镇行政村村庄村名居民村民委员会明细
- 《洁净工程项目定额》(征求意见稿)
- 城镇燃气设计规范
- 年零售药店操作规程版
- 日有所诵(二年级)
- 搞笑个性YY娱乐频道分组设计图
评论
0/150
提交评论