![人工智能和机器学习对科学、技术和科学任务的推进带来的机遇和挑战_第1页](http://file4.renrendoc.com/view2/M00/25/0D/wKhkFmYm7L2AZr5XAALstKLCZoc483.jpg)
![人工智能和机器学习对科学、技术和科学任务的推进带来的机遇和挑战_第2页](http://file4.renrendoc.com/view2/M00/25/0D/wKhkFmYm7L2AZr5XAALstKLCZoc4832.jpg)
![人工智能和机器学习对科学、技术和科学任务的推进带来的机遇和挑战_第3页](http://file4.renrendoc.com/view2/M00/25/0D/wKhkFmYm7L2AZr5XAALstKLCZoc4833.jpg)
![人工智能和机器学习对科学、技术和科学任务的推进带来的机遇和挑战_第4页](http://file4.renrendoc.com/view2/M00/25/0D/wKhkFmYm7L2AZr5XAALstKLCZoc4834.jpg)
![人工智能和机器学习对科学、技术和科学任务的推进带来的机遇和挑战_第5页](http://file4.renrendoc.com/view2/M00/25/0D/wKhkFmYm7L2AZr5XAALstKLCZoc4835.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OpportunitiesandChallengesfromArtificialIntelligenceandMachineLearningfortheAdvancementofScience,
Technology,andtheOfficeofScienceMissions
AreportfortheAdvancedScientificComputingAdvisoryCommitteefromtheSubcommitteeonArtificialIntelligence,MachineLearning,Data-
intensiveScienceandHigh-PerformanceComputing
Chair:TonyHeySeptember2020
Caption:
ThecoverimageshowsthecrystalstructureofDy2Ti2O7inwhichthemagneticionDy3+oftherareearthelementDysprosium(shownincyan)occupiessitesonageometricallyfrustratedcorner-sharingtetrahedralnetwork.AI/MLmethodswereusedtosolveforthecouplingsinthematerialandtoidentifytheoriginofitsfreezingintoaglassystate.Neuralnetworkswereusedtoextractthephaseandcouplingsinthesystemfromdiffuseneutronscatteringdatabysolvingtheinversescatteringproblem.Thestrongsingle-ionicanisotropyofDy3+ionsdefinedbytheirmolecularenvironmentrestrictstheeffectivemagneticmomenttoaligneitherinwardoroutward.Themagneticmomentsimposeanice-rulewherelow-energyspinstatesarerestrictedtoatwo-inandtwo-outconfigurationforeachtetrahedronandthebreakingofthisice-rulecreatestwofractionalizedmagneticmonopoleswithoppositepolarity.
Acknowledgement:
AnjanaSamarakoonandAlanTennant,OakRidgeNationalLaboratory.
TableofContents
ExecutiveSummary 6
Introduction 6
Context 7
KeyFindings 8
RecommendationsforDOE’sOfficeofScience 12
Report 16
IntroductionandBackground 16
ChargeLettertoASCR 17
SubcommitteeInformationGatheringActivities 17
DOEastheleadagencyforAI/MLappliedtoFacilitiesScience 19
OpportunitiesandchallengesfromArtificialIntelligenceandMachineLearningforthe
advancementofscience,technology,andOfficeofSciencemissions 20
StrategiesfortheDOEOfficeofSciencetoaddressthechallengesanddeliveronthe
opportunities 21
Introduction 21
AIApplications 23
AIAlgorithmsandFoundations 31
AISoftwareInfrastructure 37
NewHardwareTechnologiesforAI 40
InstrumenttoEdgeComputing 41
AI/MLWorkforce:Training,Focusing,andRetention 42
UniversityPartnerships 44
CollaborationwithIndustry 45
Inter-AgencyCollaboration 46
InternationalCollaboration 47
ImportanceofASCR’slong-termAppliedMathematicsandComputerScience
ResearchPrograms 49
SummaryofConclusions 49
Figures 51
Figure1:AI,MachineLearning,DeepLearninginaNutshell 51
Figure2:WhatisaDataScientist? 52
Figure3:StructureofSCAIforScience10-yearInitiative 53
ReferencesandURLs 54
AppendixA:ChargeLetter 56
AppendixB:SubcommitteeMembers 58
AppendixD:ListofAcronyms 64
Acknowledgements 65
“AIwon’treplacethescientist,butscientistswhouseAIwillreplace
thosewhodon’t.”
AdaptedfromaMicrosoftreport,“TheFutureComputed”
ExecutiveSummary
Introduction
InFebruary2019,thePresidentsignedExecutiveOrder13859,MaintainingAmericanLeadershipinArtificialIntelligence[1].ThisorderlaunchedtheAmericanArtificialIntelligenceInitiative,aconcertedefforttopromoteandprotectAItechnologyandinnovationintheUnitedStates.TheInitiativeimplementsagovernment-widestrategyincollaborationandengagementwiththeprivatesector,academia,thepublic,andlike-mindedinternationalpartners.
Amongotheractions,keydirectivesintheInitiativecalledforFederalagenciesto:
PrioritizeAIresearchanddevelopmentinvestments,
Enhanceaccesstohigh-qualitycyberinfrastructureanddata,
EnsurethattheUSmaintainsaninternationalleadershiproleinthedevelopmentoftechnicalstandardsforAI,and
ProvideeducationandtrainingopportunitiestopreparetheAmericanworkforcefortheneweraofAI.
ThemissionoftheDepartmentofEnergy(DOE)istoensureAmerica’ssecurityandprosperitybyaddressingitsenergy,environmental,andnuclearchallengesthroughtransformativescienceandtechnologysolutions.IntermsofScienceandInnovation,theDOE’smissionistomaintainavibrantUSeffortinscienceandengineeringasacornerstoneofoureconomicprosperitywithclearleadershipinstrategicareas.
FromJulytoOctoberin2019,theArgonne,OakRidge,andBerkeleyNationalLaboratorieshostedaseriesoffourAIforScienceTownHallmeetingsinChicago,OakRidge,Berkeley,andWashingtonDC.Thefourmeetingswereattendedbyover1300scientistsfromthe17DOELabs,39companies,andover90universities.ThegoaloftheTownHallserieswas‘toexaminescientificopportunitiesintheareasofartificialintelligence,BigData,andhigh-performancecomputing(HPC)inthenextdecade,andtocapturethebigideas,grandchallenges,andnextstepstorealizingthese.’ThediscussionsatthemeetingswerecapturedinthefinalreportoftheAIforScienceTownHallmeetings[2].
InresponsetoachargeletterfromtheDOE’sOfficeofScience(SC),theAdvancedScientificComputingResearch(ASCR)programaskeditsAdvisoryCommittee(ASCAC)toestablishasubcommitteetoexplorethescientificopportunitiesandchallengesarisingfromtheintersectionofArtificialIntelligence(AI)andMachineLearning(ML)withdata-intensivescienceandhighperformancecomputing.Specifically,thisAIforSciencesubcommitteewasaskedto:
AssesstheopportunitiesandchallengesfromArtificialIntelligenceandMachineLearningfortheadvancementofscience,technology,andtheOfficeofSciencemissions.
IdentifystrategiesthatASCRcanuse,incoordinationwiththeotherSCprograms,toaddressthechallengesanddeliverontheopportunities.
ThisreportistheresultoftheSubcommittee’sinvestigationofthesechargequestions.TosetthecontextasummaryofAI,MLandDeepLearningisincludedherealongwithacharacterizationofdifferentrolesfordatascientists.Thisexecutivesummaryreportsthesubcommittee’skeyfindingsandrecommendations.
Context
ThetermArtificialIntelligencewascoinedbyJohnMcCarthyforaworkshopatDartmouthCollegeinNewHampshirein1956.Attheworkshop,McCarthyintroducedthephrase‘ArtificialIntelligence’whichhelaterdefinedas[3]:
‘Thescienceandengineeringofmakingintelligentmachines,especiallyintelligentcomputerprograms.’
Bycontrast,thefieldofMachineLearningislessambitiousandcanberegardedasasub-domainofartificialintelligence[4]:
‘Machinelearningaddressesthequestionofhowtobuildcomputersthatimproveautomaticallythroughexperience.Itisoneoftoday'smostrapidlygrowingtechnicalfields,lyingattheintersectionofcomputerscienceandstatistics,andatthecoreofartificialintelligenceanddatascience.Recentprogressinmachinelearninghasbeendrivenbothbythedevelopmentofnewlearningalgorithmsandtheoryandbytheongoingexplosionintheavailabilityofonlinedataandlow-costcomputation.’
Finally,DeepLearningneuralnetworksareasubsetof
MachineLearning
methodsthatarebasedon
artificialneuralnetworks
(ANNs)[5]:
‘AnANNisbasedonacollectionofconnectedunitsornodescalled
artificial
neurons
,whichlooselymodelthe
neurons
inabiologicalbrain.Eachconnection,likethe
synapses
inabiologicalbrain,cantransmitasignaltootherneurons.Anartificialneuronthatreceivesasignalthenprocessesitandcansignalneuronsconnectedtoit.The"signal"ataconnectionisa
realnumber
,andtheoutputofeachneuroniscomputedbysomenon-linearfunctionofthesumofitsinputs.Theconnectionsarecallededges.Neuronsandedgestypicallyhavea
weight
thatadjustsaslearningproceeds.’
Theartificialneuronsinthesenetworksarearrangedinlayersgoingfromaninputlayertoanoutputlayerwithconnectionsbetweentheneuronsinthedifferentlayers.DeeplearningneuralnetworksaremerelyasubsetofsuchANNswithverylargenumbersofhiddenlayers.OntheImageNetImageRecognitionChallenge,the2015competitionwaswonbyateamfromMicrosoftResearchusingaverydeepneuralnetworkofover100layersandachievedanerrorrateforobjectrecognitioncomparabletohumanerrorrates[6].Figure1triestocapturetheessenceofthisAI,MachineLearning,andDeepLearninghierarchy[7]
Figure2attemptstodefinethreedifferentrolesforadatascientist[8].Thefirstroleisthatofadataengineerwhoisexpertatoperatingclosetothecomputers,instruments,andsensorsthatgeneratethedata.ThesecondroleisthatofadataanalystwhousesadvancedstatisticsandAI/MLmethodstoexploretheexperimentaldatasetsandassisttheresearchertoextractnewscience.Finally,inthisclassification,thereisathirdroleofdatacuratorwhoisexpertinmanaginglargedatasets,curatingthedatawithsuitablemetadataforre-use,andlaterarchiving.AllthreeoftheseaspectsofdatasciencearerelevantfortheproposedAIforScienceinitiative.
KeyFindings
FindingA
ThegrowingconvergenceofAI,Data,andHPCprovidesaonceinagenerationopportunitytoprofoundlyacceleratescientificdiscovery,createsynergiesacrossscientificareas,andimproveinternationalcompetitiveness.
Scienceandcomputingarenowinaneraofpost-Moore’sLawsilicontechnologiesandthereisanurgentneedforasea-changeintheprogrammabilityandproductiveuseofincreasinglycomplex/heterogeneoussystemsandtheseamlessintegrationofdata,algorithms,andcomputingresources.DoingsowillhelpmanagethechallengesofBigData,carryingoutscienceatscaleusingDOE’smostadvancedfacilities,leveragetheworkforceattheLabs,andsetthestagefortheemergenceanddevelopmentofrobustandreliableAIsystemswiththeabilitytolearnforthemselvesindomain-sciencespecificareas.
FindingB
SciencecangreatlybenefitfromAImethodsandtools.However,commercialsolutionsandexistingalgorithmsarenotsufficienttoaddresstheneedsofscienceautomationandscienceknowledgeextractionfromcurrentandfutureDOEfacilitiesanddata.
CurrentAIsolutionscanbesuccessfullyappliedtoconductavarietyofdataanalyses.However,newalgorithms,foundations,andtoolsareessentialtoaddressinguniquescienceconcernsinabroadspectrumofscienceapplications.AIalgorithmsneedtobeabletodealwithsparse,heterogeneous,andun-labeleddatasetsthatareoftenexpensivetocollectandarchiveandbeabletogeneratemodelsthatincorporatedomainknowledgeandphysicalconstraints.AI-enabledexperimentaldesignandcontrolarenecessaryforoptimaluseofDOEfacilities.Inthesciencecontext,AImethodsneedtohaveprovablecorrectnessandperformance,beabletoexposebiases,andtoquantifyuncertainties,errors,andprecision.
FindingC
AdoptingAIforSciencetechnologiesthroughouttheOfficeofSciencewillenableUSscientiststotakeadvantageofthetremendousnewadvancesintheDOE’sscientificuserfacilities.
TheDOE’sOfficeofScienceprovidesUSresearcherswithaccesstothelargestandmostdiversesuiteofscientificexperimentalfacilitiesintheworld–fromX-raysynchrotronsandneutronsourcestointegrativegenomicsandatmosphericradiationfacilities–aswellastotheworld’smostcapablehighperformancecomputingfacilities.UpgradestotheseuserfacilitiesandnewnuclearphysicsfacilitiescomingonlinenowandoverthenextdecadewilldramaticallyincreasetheamountofnewdataproducedacrossallofthescientificdomainssupportedbytheOfficeofScience,posingnewchallengesandnewopportunities.Science-awareAItechnologieswillallowustoextractinformationandscientificunderstandingfromthesetremendousnewdatasources.
FindingD
RealizingthepotentialforagenerationalshiftinscientificexperimentationattheDOELaboratoriesduetoscience-drivenAI/MLtechnologiesrequiresfarmorethansimplycomputepowerandencompassesthefullspectrumofcomputinginfrastructures,rangingfromubiquitoussensorsandinterconnectivityacrossdevicestoreal-timemonitoringanddataanalytics,andwillrequireaconcertedandcoordinatedR&DeffortonAI/MLalgorithms,tools,andsoftwareinfrastructure.
AcrosstheSCprograms,scientificapplicationsofArtificialIntelligence(AI)andMachineLearning(ML)canbuildonthepowerofsensornetworks,edgecomputing,andhighperformancecomputerstotransformscienceandenergyresearchinthefuture.GiventhehighlyspecializednatureofmanyDOEfacilitiesandscientificresearchdomains,itisnotpossibletorelysolelyonthird-partyAI/MLresearchanddevelopment(R&D)forthistransformation.TheDOEwillneedtobuilditsownR&Dprogramsthatfocusonthemostchallengingscience-drivenapplications.SoftwareinfrastructurewillberequiredthatcombinesleadershipinAI/MLtoolsandalgorithmswiththeDOE’straditionalstrengthsinsimulationandmodelingtechnologiesandthatcanexecuteonnewcomputingplatformscapableofhighperformanceonbothtypesofapplications.TheanticipatedreturnswillhelpensurethattheUScontinuestomaintainandenhanceleadershipinbothdata-intensivescienceandhighperformancecomputing.
FindingE
TheDOELabsareuniquelypositionedtointegrateAI/MLtechnologiesacrossahostofscientificchallengesthankstotheenviablecultureofco-designteamsconsistingofscientificusers,instrumentproviders,theoreticalscientists,mathematiciansandcomputerscientiststhathasprovensosuccessfulintheExascaleComputingProject.
Thesubcommittee,therefore,seesacompellingneedforAI/MLtechnologiestobeincorporatedintoalloftheDOE’sscientificresearchcapabilitiesinordertoeffectivelysupporttheOfficeofScience’smissionsinenergy,nationalsecurity,fundamentalsciences,andtheenvironment.DOE’sNationalLaboratories,togetherwithUSuniversityandindustrypartners,havethenecessaryassetstoinitiatealarge-scaleprogramtoacceleratethedevelopmentofsuchcapabilitiesandthenecessaryworkforcetonotonlymeettheirSCmissionneedsbutalsobenefitallofDOE’sactivities.
FindingF
TheimpactofaDOE-drivenAI/MLstrategyforsciencewillhavenationalimplicationsfarbeyondtheOfficeofScienceandwilldrivenewindustrialinvestments,includingacceleratingengineeringdesigns,synthesizingmaterials,andoptimizingenergydevices,aswellasadvancinghardwareandsoftwarecomputingcapabilities.
Thebenefitstothenationindevelopingpowerfulandbroad-basedAIforSciencecapabilitiesintheDOELaboratorieswillextendwellbeyondtheDOE’sprograms.ThedevelopmentofcomprehensiveAI/MLcapabilitieswillbenefitothergovernmentagenciesandabroadrangeofindustriesinthiscountry,includingenergy,pharmaceutical,aircraft,automobile,entertainment,andothers.MorepowerfulAIcapabilitieswillallowthesediverseindustriestomorequicklyengineernewproductsthatcanimprovethenation’scompetitiveness.Inaddition,therewillbeconsiderableflow-downbenefitsthatresultfrommeetingboththehardwareandsoftwareAIchallenges.InitiatingamajorprogramfocusedonapplyingAI/MLtechnologiestotheDOEscientificchallengeswouldbelikelytoleadtosignificantgainsinUScompetitivenessinseveralcriticalareasandtechnologies.
FindingG
AworkforcetrainedinadvancedAI/MLtechnologieswouldplayapivotalroleinenhancingUScompetitiveness.
Thetraining,focusing,andretentionofacadreofyoungpeople,expertsinbothinventinganddeliveringthetechniquesandtechnologiesofAI/MLforscienceandengineeringapplications,iscriticaltothesuccessoftheAIforScienceagenda.TheOfficeofScienceDOELaboratoriescanplayakeyroleincooperationwiththeNationalScienceFoundation(NSF).Overthepast20years,theInformationTechnology(IT)industryhasexpandeddramatically,drivenbye-commerce,socialmedia,cloudservices,andsmartphones.Inrecentyears,theemergenceoftheInternetofThings(IoT),thewidespreaddeploymentofhealthcaresensors,increasingindustrialautomation,andthedevelopmentofautonomousvehicleshavefurtherexpandedthedomainofAI/MLdataanalyticsandservices.Inresponsetothesegrowingworkforcedemands,moststudentsarenowtrainedinsoftwaretoolsandtechniquesthattargetcommercialopportunities.Atpresent,commercialtoolsarerathergenericandnotwell-targetedtoscientificapplications.AnAIforScienceinitiativewoulddeliverscientificAI/MLtoolsandenvironmentsappropriatefortraininganewgenerationofscientistsandengineers.
FindingH
PartneringwithotherAgenciesandwithinternationaleffortswillbeimportanttodeliverontheambitiousgoalsofanAIforScienceinitiative.
TheNSFandNIH,thetwoothermajorscience-focusedfundingagenciesintheUS,alsohaveorareplanning,majorinvestmentsinAI/MLprogramsfortheirscientificdomains.InseveralareasthereareclearsynergiesofresearchinterestandtheDOEshouldexplorepossiblemechanisms
forcollaborativeprojectswithotheragenciessuchasNISTandDODinanyDOEAIforScience
initiative.
OthercountrieshavealsorecognizedthepotentialbenefitsofapplyingAL/MLtechnologiestoscience.ThesubcommitteebelievesthattherewouldbeabenefitintheDOEcollaboratingwith‘like-mindedinternationalpartners’onaspectsofanAIforScienceresearchagendathatarelikelytobeofmutualbenefit.
RecommendationsforDOE’sOfficeofScience
Creationofa10-yearAIforScienceInitiative
Inordertocreatetheworld-leadingAIsystemsandapplicationsneededtodrivescientificproductivityanddiscoveryinscienceandtechnologydramaticallybeyondthatachievablewithtraditionalscientificsupercomputing,werecommendthattheDOEOfficeofSciencestartaten-yearprogramtodevelopanambitiousAIforScienceinitiative,asrecommendedintherecentPCASTreport[9].Thisprogramshouldencompassfoundationalresearchintonew,science-awareAImethodologies,specificallydesignedforDOEmission-criticalchallenges,andAIsolutionsthatcanbedeployedinoperationalsettingsatleadingDOEresearchfacilities.Theinitiativeshouldprovideaclear,guidedroadmapfromresearchtodeployment.TheDOElaboratoriescanplayakeyrolehere,offeringleading-edgeexascalesupercomputersandlargeexperimentalfacilitiesgeneratingincreasinglylargescientificdatasets,aswellasprovidingcriticalexpertiseinmathematics,computerscience,andexperiencewithDOEmission-specificapplications.Nootheragencyhasthebreadth,criticalmass,orrecentlargeprojectmanagementexperiencetoundertakethiscross-disciplinaryAIforSciencechallenge.However,thereisaclearcaseforthebenefitsofcollaborationwithotheragenciesandothercountries,toleverageexistingexpertisetomaximumadvantage.Partnershipswithotherfundingagenciesandothercountriesarethereforestronglyencouraged.
StructureofanSCAIforScienceInitiative
ItisrecommendedthatthisAIforScienceinitiativebestructuredaroundfourmajorAIR&Dthemes:
AI-enabledapplications
AIalgorithmsandfoundationalresearch
AIsoftwareinfrastructure
NewhardwaretechnologiesforAI
Thesubcommitteebelievesthatthisten-yearAIforScienceinitiativeshouldbefundedatthesamescaleasthesuccessfulExascaleComputingInitiative(ECI)andExascaleComputingProject(ECP).Essentialforthesuccessofsuchaninitiativeisthattheworkofthesefourthemesmustbeclosely-coupledinamannersimilartothatusedintheECP,astheadvancesandimprovementsinoneareacaninformadvancesandimprovementsinotherareas.
Figure3illustratesanoverviewofapossibleroadmapforsuchanAIforScienceinitiative.AsfortheECIandECP,theroadmapforthisproposedAIforScienceinitiativeenvisagesaninitial‘incubation’researchphaseofcoordinatedprojectswithco-designcentersconnectingthefourmajorthemes.PartnershipsacrossallOfficeofSciencedomains,withparticipationfromuniversitiesandprivateindustry,wouldbeinitiatedearlyintheprogram.ThegoalofthisresearchphaseistospecifytheapplicationgrandchallengesandAI/MLtoolsandservicesrequiredasdeliverablesinthemorefocusedprojectR&DandDeploymentphases,wherebroad
engagementoftheDOEresearchcommunitybecomescritical.SincetheseappliedR&DandDeploymentphaseswillinevitablygeneratenewquestionsandchallenges,havingtheresearchphasecontinuingandoverlappingwiththeR&DandDeploymentphaseswillsignificantlyincreasethechancesofsuccessfortheAIforScienceProject.
AnInstrument-to-EdgeInitiative
ThesubcommitteebelievesthatASCR,inclosecooperationwithBESandwiththeotherscienceprogramsintheOfficeofScience,shouldworkwithscientists,users,andthebroadacademiccommunitytodefinerequirements,conductresearch,competitiveprocurementanddesignahighlyintegratedend-to-endsystemandsoftwarestackthatconnectsinstrumentsattheedgetotheneededAIcomputingresources.Integratingnationalandglobaldatasources(largescaleexperimentalfacilities,observationalnetworksterrestrial&space-based,etc.)posesuniqueopportunitiesandchallengesthatrequireaddressingfoundationalresearchinthecontextofleading-edgescientificexperiments.Integratedsystemsforacquiring,analyzing,transforming,storing,andmaintainingscientificresults,capturingprovenance,andcontributingbroadlyaccessedanalyticalworkflowswithinDOEsupportedcomputationalinfrastructurecouldbetransformative.Thereare,however,severechallengesthatwillneedtobeconfrontedintermsofprivacy,security,commerciallicensingofdata,andintegrateddataservices.
BuildingonASCR’sco-designexperienceinECP,applicationusers,softwareinfrastructuredevelopers,AI/MLresearchers,andLabandindustryhardwarespecialistsshouldbeencouragedtodefine,develop,andcontributetoacommonsoftwarestackforAI/MLEdgecomputingresourcesacrossthedifferentfacilities.ThesoftwareinfrastructureshouldsupportsomegenericservicesatthefacilitiesbutalsoallowtheeasycreationofspecializedAI-basedsoftwarepipelinesspecifictothefacilityandcapableofsupportingcouplingtoparticularinstrumentsinsomecases.
Training,focusing,andretentionofAI/MLworkforce
Industry,nationallaboratories,government,andbroadareasofacademicresearcharemakingmoreusethaneverbeforeofAI,ML,andsimulation-baseddecision-making.Thistrendisapparentacrossmanydomainssuchasenergy,manufacturing,finance,andtransportation.TheseareallareasinwhichAIisplayinganincreasinglysignificantrole,withmanymoreexamplesacrossscience,engineering,business,andgovernment.Researchandinnovation,bothinacademiaandintheprivatesector,areincreasinglydrivenbylarge-scalecomputationalapproachesusingAIandMLtechnologies.WiththissignificantandincreasedusecomesademandforaworkforceversedintechnologiesnecessaryforeffectiveandefficientAI/ML-basedcomputationalmodelingandsimulationandbigdataanalytics,aswellasthefundamentalsofAI/MLalgorithms.Graduateswiththeinterdisciplinaryexpertiseneededtodevelopand/orutilizeAItechniquesandmethodsinordertoadvancetheunderstandingofphysicalphenomenainaparticularscientific,engineering,orbusinessfieldandalsotosupportbetterdecision-makingareinhighdemand.
Astrongresearchprogramwillcruciallyrelyonacomplementaryeducationandskillscomponent,whichisasimportantasprovidingadequateinfrastructuresupport.AsemphasizedintheASCRECPTransitionreport[10],thisisalsoatimelyandimportantopportunitytofocusSCeffortstocreateamorediverseandinclusiveworkforce.Acontinuingsupplyofhigh-qualitycomputationalanddatascientistsavailableforworkatDOElaboratoriesisofvitalimportance.Inhighperformancemodelingandsimulation,forexample,theDOEComputationalScienceGraduateFellowship(CSGF)programhassuccessfullyprovidedsupportandguidancetosomeofthenation'sbestscientificgraduatestudents,andmanyofthesestudentsarenowemployedinDOElaboratories,privateindustry,andeducationalinstitutions.Weneedasimilarfellowshipprogramtomeettheincreasingrequirementforcomputationalanddatascientiststrainedtotackleexascaleanddata-intensivecomputingchallenges.Inaddition,theDOESCshouldexplorethepossibilitiesforcollaborationwiththeNSFabouttheprovisionofrelevanttrainingprogramsinAI/MLtechnologiesandtheirapplicationtoscience.
Inter-Agencycollaboration
AlthoughtheNSFhaslongbeenregardedastheleadagencyforfundamentalAIresearch,DOEisclearlytheleadagencyforresearchinvolvingtheintersectionof‘BigScience,BigData,andBigComputing.’DOEhasnotonlyestablishednationalandinternationalleadershipinHPCandsupercomputingbutisalsoaleaderintheapplicationofAI/MLtechnologiestotheverylargescientificdatasetsgeneratedbytheirlarge-scaleexperimentalfacilities.
WiththeNIH,theDOESChasasuccessfulcollaborationwiththeNationalCancerInstitute(NCI)intheCANDLEproject[11].DOEisnowdevelopinganMOUwithboththeNSFandNIHonaprogramofcollaborativeresearchinComputationalNeuroscience.Thesubcommittee,therefore,recommendsthattheSCexplorenewopportunitiestoworkwithbothNSFandNIHinareaswheretherewouldbeaclearbenefitforscientificprogressunderaDOE-ledAIforScienceinitiative.TheremayalsobeopportunitiestoworkwithotherUSfundingagencies,suchasNISTandDOD,inareasofmutualinterest.
Internationalcollaboration
Thereisaneedforbroad-based,coordinatedactionbylike-mindedinternationalpartnerstoharnesstheglobalscientificsoftwarecommunitytoaddressthetremendousopportunitiesindata-intensivesciencestemmingfromthehugeincreaseinscientificdatacollectionrates.ComputationalanddataanalyticalmethodsdrivenbyAI/MLarenowuniversallyacceptedasindispensableforfutureprogressinscienceandengineering.
InternationalleadershipinAIforScienceoverthecomingdecadewillhingeontherealizationofanintegratedsetofprogramsspanningthefourinterdependentareasnotedabove–AI-enabledapplications,AIalgorithmsandfoundationalresearch,AIsoftwareinfrastructure,andnewhardwa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《技术的含义及作用》课件
- 康复评定期末考试练习测试卷
- 车身选择上复习测试有答案
- 《拉深件各个计算》课件
- 《音乐教师心理整容》课件
- 《积极的工作心态》课件
- 《金融机构极其体系》课件
- 小学语文群文阅读教学实践研究
- 《静脉输液并发症》课件
- 《新兴工业区》课件
- 萧条中的生存智慧:越是不景气越要成为引擎般的存在
- 海南矿业股份有限公司选矿实验中心建设项目 环评报告
- htcc制备工艺书籍
- 建立高效的员工沟通与反馈机制
- 促进学习的课堂评价:做得对
- 中国电信互联网+酒店解决方案
- 《信息科技》学科新课标《义务教育信息科技课程标准(2022年版)》
- 《语用学之指示语》课件
- 《对折剪纸》课件
- 小学数学人教版六年级上册分数混合运算练习题
- 培训学校 组织架构及部门岗位职责
评论
0/150
提交评论