版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FromDeepLearningtoRationalMachines–FinalManuscriptVersion–CameronBuckner
cjbuckner@
PAGE
10
ThisisadraftofachapterthathasbeenacceptedforpublicationbyOxfordUniversityPressintheforthcomingbook:
FromDeepLearningtoRationalMachines
WhattheHistoryofPhilosophyCanTeachUsabouttheFutureofArtificialIntelligence
byCameronJ.Bucknerdueforpublicationin2023
Chapter1
ModerateEmpiricismandMachineLearning
Insteadoftryingtoproduceaprogrammetosimulatetheadultmind,whynotrathertrytoproduceonewhichsimulatesthechild's?Ifthiswerethensubjectedtoanappropriatecourseofeducationonewouldobtaintheadultbrain.Presumablythechild-brainissomethinglikeanote-bookasonebuysitfromthestationers.Ratherlittlemechanismandlotsofblanksheets.…Ourhopeisthatthereissolittlemechanisminthechild-brainthatsomethinglikeitcanbeeasilyprogrammed.
-AlanM.Turing(1950)
1.1Playingwithfire?Naturevs.nurtureforcomputerscience
Inhumaninquiry,theintroductionofagranddichotomy—goodvs.evil,mortalvs.divine,emotionvs.reason—cantakeonthevitalimportance,aswellastheattendantdanger,ofthediscoveryoffire.Whilesuchdichotomiessupportqualitativeshiftsinthereachofourtheorizing,theyareoftenquicklytakenforgranted,perhapstooquickly,asanelementalforcegoverningtheworldandourplacewithinit.Thedistinctionbetweennatureandnurturestandsasaprimeexample.Thisoppositionhasanimatedthehumanintellectforthousandsofyears,motivatingthesystematicexplorationofcompetingstylesoftheoryinnearlyeveryacademicdiscipline.Wetendtohavestrongintuitionsastowhetherhumanknowledgeisproducedbyturninginwardtounpackourinnatementalendowmentorbyturningoutwardtointerpretthecipherofexperience,andtheenergyprovidedbytheseintuitionshaspoweredavarietyofscientificandtechnologicalinnovations.AswithotherPrometheanbargains,however,suchadvancesareboughtattheexpenseofnewandpersistentdangers.Vigorouslyrubbingtheseopposingintuitionsagainstoneanothercangeneratefrictionwithoutillumination,causingtheoriststopursuearesearchprogramlongafteritsempiricalprospectshavegrowncold,ortolosesightofthedetailsofoneanother’sviewsinahazeofmisunderstandingand
exaggeration.And,ofcourse,firesthatgrowtoolargecanburndangerouslyoutofcontrol.Lestwegetsinged,thesedistinctionsmustbecontinuouslywatchedandcarefullytended—particularlywhenapowerfulnewsourceoffuelistossedintotheflames.
Wearenowinthemiddleofjustsuchaconflagration,andthenewfuelsourcegoesbythenameof“deeplearning.”Indeed,fundingandresearchfordeeplearningiscurrentlyblazing;asof2023,everymajortechcompany’smarqueeR&Dgroupisfocusedondeeplearning,withfiercebiddingwarsfortoptalent.
MostissuesofprestigepublicationslikeScienceandNaturefeatureoneofthesegroups’latestexperiments.Thesepublicationsreportaseriesoftransformativebreakthroughsinartificialintelligence,includingsystemsthatcan:recognizecomplexobjectsinnaturalphotographsaswellorbetterthanhumans;defeathumangrandmastersinstrategygamessuchaschess,Go,shoji,orStarcraftII;createnovelpicturesandbodiesoftextthataresometimesindistinguishablefromthoseproducedbyhumans;siftthroughthefaintestradioechoestodiscovernewexoplanetsorbitingstarsthousandsoflightyearsaway;crunchmassiveamountsofdatageneratedbyparticleacceleratorstotrytofindcounterexamplestotheStandardModelinphysics;andpredicthowproteinswillfoldmoreaccuratelythanhumanmicrobiologistswhohavedevotedtheirlivestothetask.1
Inshort,deeplearning’scurrentfortunesarewhite-hot;but,aswithallsystemsofknowledgeacquisition,ourexpectationsofitscontinuedprosperityareshapedbyourviewsonthenature-nurturedichotomy.Deeplearning’scurrentstatusandfuturedevelopmentarethereforemeaningfullyinformedbyphilosophicalpositions,particularlythoseonofferinthehistoricallygroundedbutongoingdebatebetweenempiricistsandnativists.Atfirstblush,thisdebateconcernstheoriginsofhumanknowledge:empiricistsholdthatknowledgeisderivedfromsensoryexperience,whereasnativiststendtoberationalistswhoinsteadprizeourcapacitytoreason—usuallydrivenbyaninnatetheoryoftheworld’sbasicstructureand/orof
1Fordetails,see(Baldi,Sadowski,andWhiteson2014;Brownetal.2020;Chowdheryetal.2022;Jumperetal.2021;Krizhevsky,Sutskever,andHinton2012;Rameshetal.2022;ShallueandVanderburg2018;Silveretal.2017;Vinyalsetal.2019).
rationalminds—asthesourceofgenuineknowledge.2Whentreatedasanapproachtoartificialintelligence,deeplearningisalreadyidentifiedasanurture-favoring,empiriciststyleoftheory,thoughIarguethatitsachievementsvindicateamoderatelyempiricistapproachtocognitionthatismorenuancedandresourcefulthantheempiricismtypicallysurveyedinevaluationsofdeeplearning’spotential.Thismoderatelyempiricistapproach,legitimatedbyaninvestigationofthehistoricaloriginsofthephilosophicaldebateintheworkofinfluentialempiricistphilosophersandtheapplicationoftheirviewstotherelationshipbetweenmachinelearningmodelsandthemind,suggeststhattoday’sachievementsindeeplearningsubstantiallyincreasetheplausibilitythatrationalcognitioncanbeachieved—andisachieved,inhumans,manyanimals,and,ifwehopetosucceed,artificialagents—withouttheaidoftheinnatetheoriesorconceptsusuallyrecommendedbytheopposed,nature-favoring,rationalistfactionoftheorists.
Whileempiricistandnativiststheoristsfightoverthepast,present,andfutureofdeeplearningsystemsdevelopment,thecurrententhusiasmforempiricisminengineeringandbusinessthreatenstoburnoutofcontrol—thoughthisparticularstrainofempiricismsometimesdrawsoxygenfromasimplisticunderstandingoftherelationshipbetweenthesuccessesofdeeplearningsystemsandthewaythathumansandanimalsactuallysolveproblems.Researchismovingsorapidlythataninfluentialdeeplearningpublicationcanreceive20,000citationsbythetimeitisonlytwoorthreeyearsold—manyofthosewhileitisavailableonlyonapre-printarchive,meaningthatithasnotyetgonethroughthenormalprocessofpeer-reviewbyotheracademicswhocouldskepticallyassessitsclaims.Meanwhile,leadingnativistsaregoinghoarsecallingforthefirebrigade.Thesenativistsworrythatdeeplearningisbeingappliedtoawiderangeofproblemswithoutafirmunderstandingofhoworwhyitworks,andthatthesolutionsdiscoveredbydeeplearningagentsarebrittleanddonotgeneralizetonewsituationsaswellasthestrategiesdeployedbyhumansandanimals.Dependinguponwhetheryouaskempiricistsornativists,deeplearningsystemscaneitheralreadyprocessinputdatasoeffectivelythattheyareatleastslightlyconsciousandonthevergeofachievingescapevelocityintoworld-spanningsuperintelligence,ortheycandolittlemorethanbludgeonproblemswith
2Toforestallconfusion,thephilosophicalrationalismattributabletothinkerslikeDescartes,Leibniz,andSpinozaisnottobeconflatedwiththenew“rationalism”associatedwithblogslikeLessWrongorSlateStarCodex,forwhichthetraditionalphilosophicaldistinctionisorthogonal.
massiveamountsofstatisticsandlinearalgebrathatcanimitatetheoutwardappearanceofhumanintelligencebut,becausetheylacktheunderlyingstructureprovidedbythehumanmind’sinnatestartupsoftware,willnevercaptureeventhemostbasicaspectsofhumanmentality.
Althoughdeeplearningcanbeunderstoodinpurelytechnicaltermsoutsidethenature-nurturedichotomy,andhenceoutsidetheempiricist-nativistdebate,itisdifficulttoassessitsprospectsasaroutetoartificialintelligenceexceptthroughitslight,withallitsattendantprospectsandperils.Thisdebateofcoursehasancienthistoricalorigins,yetinfluentialscientistsfrequentlyinvokeitstermstoexplainandmotivatetheircurrentviews.Forinstance,inafrontNaturearticle,ateamfromGoogle’sDeepMinddivisionpitchedtheirAlphaZerosystem—whichcaneasilydefeathumangrandmastersattheChineseboardgameofGo,agamethatisinsomewaysmorecomplexthanchess—asoperatingwitha“tabularasa”orblankslatealgorithm(Silveretal.2017).ThisempiricistmetaphorenteredtheWesternlexiconviaAristotle’sDeAnima(III,429b-430a),whichcomparesthehumanmindtothewax-coveredtabletswhichtheGreekacademiesusedfornotes;thesetabletswere“blanked”byheatingthemuntilthewaxmelted,smoothingthesurfaceforre-use.Themetaphorfortheinfant’smindbecamecanonicalthroughitsrepetitionbyarangeofempiricistphilosophers,fromAristotle’sinheritorsIbnSina(Avicenna)andSt.ThomasAquinas(thelatterofwhichsummarizeditwiththePeripateticMaxim,whichstatesthat“nihilestinintellectuquodnonsitpriusinsensu”or“nothinginthemindwhichisnotfirstinthesenses”—DeVeritate2.3.19),totheEarlyModernempiricistsJohnLockeandDavidHume,withwhomtheviewistodaymostcommonlyassociated.3
Deeplearningenthusiastsarenottheonlyonestosummonthehistoryofphilosophyinthiscontext.
Contemporarynativistshavealsobeeneagertoalignthecurrentdebatewithhistoricalpositions.InhiscritiqueoftheAlphaZeropaper,forexample,thenativistpsychologistGaryMarcusassociatesSilveretal.’sblankslatelanguagewiththeviewsofLocke,whowrotethat“allideascomefromsensationorreflection”(E
3Otherphilosophicaltraditionsalsohaveviewswhichappearrecognizablyempiricistbythestandardsofthisdebate;forexample,someoftheYogācāraBuddhistphilosopherslikeDharmakīrtiareidentifiedasempiricistbyinterpreters(Powers1994;Tillemans2021)andsomehaveevenwonderedwhetherWesternempiricistslikeHumewereinfluencedbyexposuretoBuddhistphilosophy(Gopnik2009).Othercommentators,however,viewsuchtrans-culturallinkageswithskepticism(Conze1963;Montalvo1999).Atanyrate,averyinterestingbooksimilartothisonecouldbewrittenbydrawinguponthefacultypsychologyinthesealternativetraditionstointerpretandguidethedevelopmentofdeeplearning.IamgratefultoAmitChaturvadifordrawingmyattentiontothesepotentialparallels.
II.ii.2).MarcuscouldjustaswellhavelinkedittoHume,whodeclaredthat“alloursimpleideasintheirfirstappearancearederiv’dfromsimple[sensory]impressions”(commonlyreferredtoashis“CopyPrinciple”–T/4).Hume,however,ismorefrequentlythetargetofJudeaPearl.Oneofthemostinfluentiallivingcomputerscientistsandafrequentdeeplearningcritic,Pearlhasrecentlyworriedthatdeeplearningtheoriststakeasself-evidenta“radicalempiricism”accordingtowhichallknowledge“canbeanalyzedbyexaminingpatternsofconditionalprobabilitiesinthedata”(2021).4
Thehistoryofphilosophycertainlyspeakstodeeplearning’sachievements,butnotintermsassimpleastheseinterlocutorssuggest.Wheretheyseeastarkdichotomy,LockeandHumedeveloptheirkeystonemantrasintoanelaborateempiricisttheoryofhumancognitionthatismorenuancedandflexible.Infact,mostresearchindeeplearningismotivatedbyasetofassumptionsmoreconsistentwiththesephilosophers’lessradicaltakeonempiricism,andoneofthemaintasksofthisbookistoarticulateexactlywhichversionofempiricismismostsupportedbyrecentdevelopments.Identifyingandclarifyingthemoderatelyempiricistapproachtoooftenlostintheflashpointdebatescanunlockuntappedexplanatorypower,bothforunderstandingdeeplearning’scurrentmethodsandforchartingtheoptimalcoursetofuturebreakthroughs.Thechallengeisthataswithpoliticalslogans,eventheseeminglysimplestatementsoftheempiricistcreedcanmeandifferentthingstodifferentconstituencies.Byputtingintheinterpretiveworktounderstandthemcharitably,wecanavoidtalking-pastanddirectevaluativeeffortstowardsfruitfulfutureresearch.
Unsurprisingly,eventhemostprominentnativistsandempiriciststodayinterprettheaforementionedsloganstoimplyquitedifferentthings.Nativist-leaningtheoriststendtoassociateblankslateswiththelastgreatempiricistinferno,thebehavioristmovementinAmericanpsychology,whichreachedtheheightofitspowerandthenquicklydwindledtoembersinthemiddleofthelastcentury.Suchtheoriststypicallyconnecttheempiricistblankslatewithradicallyinsufficientexplanationsforhumanlearning.StevenPinkerarticulatesthisperspectiveclearlyinhisbookTheBlankSlate.AccordingtoPinker,today’sempiricistshaverevivedthe
4Ingeneral,Pearlislessconcernedherewiththedebateovernativismandanti-nativisminpsychologythantheseothercritics,andmoreengagedinthebattlebetweenskepticalHumeanandrealistapproachestocausationinmetaphysicsandphilosophyofscience.
doomedmissionofthebehaviorists,who“throughmostofthe20thcentury…triedtoexplainallofhumanbehaviorbyappealingtoacoupleofsimplemechanismsofassociationandconditioning”(Pinker2003).5Lakeetal.alsocalledoutthe“strongempiricismofmodernconnectionistmodels”whichtheyidentifywiththe“oversimplifiedbehaviorism”thatwas“repudiated”bythecognitiverevolutioninthelatterhalfofthe20thcentury(2017,p.4).ThisreportedabrogationoccurredwhenNoamChomskysmotheredbehaviorismunderawaveofhis“Cartesianlinguistics,”whichexplicitlyinvokedtherationalistnativismofFrenchphilosopherRenéDescartes(Chomsky1966)toinspirehisargumentsforanintricatesetofinnategrammaticalrulestoexplainhumanlinguisticability.6Marcusevenformalizesthisbehavioristinterpretationofempiricismbydefiningcognitionasafunctionrangingoverfourvariables:
cognition=f(a,r,k,e),
wherea=algorithms,r=representationalformats,k=innateknowledge,ande=experience.Marcus’construaloftheempiricistapproach—which,asmentionedabove,MarcusattributestoLocke—“wouldsetkandrtozero,setatosomeextremelyminimalvalue,(e.g.,anoperationforadjustingweightsrelativetoreinforcementsignals),andleavetheresttoexperience”(Marcus2018).7
Onthispoint,nativistspracticesomethingoftheradicalsimplificationtheycritique,byassumingthatforthemindtobe“blank”atbirth,itmustbeginwithvirtuallynoinnatestructureatall.ThemorecharitablenativistphilosophersLaurenceandMargolis(2015)haverecentlyworriedthatsummarizingcurrentdebatesincognitivescienceasthequestionofwhetherthemindhasanyinnatestructurewhatsoeverhastheunfortunateconsequencethat“therearen’treallyanyempiricists.”8Inreality,acompletelystructurelessmind,likeaninertmineralslab,wouldnotlearnanythingbybeingsubjectedtoanyamountofstimulus.Thisseems
5SeealsoChilders,Hvorecký,andMeyer(2021),whoalsolinkdeeplearningtobehaviorism;Idefendaverydifferentapproachtolinkingdeeplearningtothehistoryoftheempiricist-rationalistdebate.
6Whilealsoendorsingarichpackageof“startupsoftware”forthemind(whichintheirfavoredBayesianmodelsistypicallyprogrammedmanuallyinsymbolicform,includingmanuallyspecifiedrepresentationalprimitivesandpriorprobabilityestimations)whichtheythinkshouldincludecomponentsofCoreKnowledge,Lakeetal.(2017)areofficiallyagnosticastowhetherthatsoftwareisinnateorlearnedveryearlyinchildhood.
7Whatdoes“innate”meanhere?Anentiresubareaofphilosophyofsciencehasburgeonedaroundthequestionofhowbesttodefineinnateness(Ariew1996;GriffithsandMachery2008;Khalidi2001,2016,2016;MallonandWeinberg2006;MameliandBateson2006;NorthcottandPiccinini2018;Samuels2004,2007).Forpresentpurposes,wecanproceedwithaminimalistnotionthatimpliesatleast“notlearned”(Ritchie2021).
8Theempiricist-leaningdevelopmentalpsychologistLindaSmithhasalsocriticizedthisframinginherarticle,“Avoidingassociationswhenit’sbehaviorismyoureallyhate”(Smith2000).
tobesomethingthatnearlyallinfluentialempiricistshaveacknowledged.Backinthetwilightofbehaviorism’sreign,theempiricistphilosopherWillardvanOrmanQuineobservedthateventhemostradicalbehaviorists,likeJohnWatsonandB.F.Skinner,were“knowinglyandcheerfullyupto[their]neckininnatemechanisms”(quotedinLaurenceandMargolis2015;Quine1969:95–96):theymustassumearicharrayofbiologicalneeds,sensorymechanisms,attentionalbiases,andreflexivebehaviorswhichcouldbeassociatedwithoneanotherbeforeeventhesimplestformsofassociativelearningcouldbegin.Theitemsonthislistsuitorganismstotheirevolutionarynicheswithoutappealtoinnateknowledgestructures,illustratingwhyamoredetailedexaminationofempiricist-brandedtheorizinginbothphilosophyandcomputerscienceisrequired.Amoresystematicexaminationofthehistoryofempiricisttheorizingquicklyrevealsappealstoinnatefactorsmoreexpansivethanthislist.Thus,whileMarcus’formalizedmodelofempiricismissharperthantheempiricistmantrasinitsimplications,itisalsolessuseful,particularlyifweaimforacharitableevaluationofdeeplearning’sprospects.
Theprecedingillustrationoftheempiricist-nativistdichotomy,asitinformsthedevelopmentofdeeplearningsystems,offersaparadigmaticexampleofthenature-nurturedichotomy’senduringinfluenceonhumanthought.Bothdistinctionsaretoooftenresolvedintostarkbinaries,whereasthedebateisbetterrepresentedintermsofsubtlecontinuumsanddifferencesamongststylesofexplanation.Althoughthepersistenceoftheoppositionbetweennatureandnurturesuggestsanunsolvablephilosophicalriddleattheheartofknowledgeacquisition,itcan,withcare,beofusetous.Thesameistrueoftheempiricist-nativistdichotomy.Wheninterpretedwithmoreattentiontothehistoryofphilosophyanditsprecisecontextofapplication,itcanencouragemoreusefulandprincipleddebatesbetweendistinctresearchmethodologies.
Infact,incaseswherescientistshavetakenpainstounderstandthedebate’shistory,itcanbeseentohavefosterednotablescientificdiscoveriesofthelastcentury,suchasAlbertEinstein’stheoryofspecialrelativityortheveryinventionofthedigitalcomputerandartificialneuralnetworksoverwhichtoday’sdebatesrage.ThephilosopherofscienceJohnNortonarguesthatEinstein’stheoryofspecialrelativitywasinspiredbyhisparticipationinareadinggrouponHume’sTreatisearound1902-1903withthemathematicianConradHabichtandphilosopherMauriceSolovine,fromwhichEinsteinobtainedadeepregardforHume’s
empiricism.Inautobiographicalnotesfrom1946,Einsteinwritesofhisdiscoveryoftherelativityofsimultaneity(toaninertialframeofreference)whichundergirdsspecialrelativitythat“thiscentralpointwasdecisivelyfurthered,inmycase,bythereadingofDavidHume’sandErnstMach’sphilosophicalwritings”(quotedinNorton2010).WhilerationalistphilosopherslikeImmanuelKantthoughtthatabsolutesimultaneitywasnecessarilyentailedbyouraprioriconceptionofspacetime,Einsteinreasonedthatifeventhesebedrockconceptswerelearnedfromexperience,thentheremightbeexceptionstotheminextremeconditions,suchaswhenobjectstravelatvelocitiesapproachingthespeedoflight.
Equallymomentousachievementscanbeattributedtoscientistslisteningtothenativistmuse;theneuroscientistGraceLindsayrecountshowtheearlyneuralnetworkpioneersMcCullochandPitts(1943)idolizedtherationalistphilosopherGottfriedLeibniz,whotheorizedthatthemindoperatesoveraninnatelogicalcalculusfromwhichalltruepropositionscouldbemechanicallydeduced(Lindsay2021Ch.3).
McCullochandPitts’ideathatthesecomplexlogicalandmathematicaloperationscouldbecomputedbylargenumbersofsimplecomponentsorganizedintherightkindofnetworkarrangementservedasdirectinspirationforbothJohnvonNeumann(1993)andFrankRosenblatt(1958),whoseworkscanbeseentohaveproducedboththeopposingresearchtraditionsresponsibleforthedigitalmicroprocessorarchitectureanddeepneuralnetworks(DNNs),respectively.
Here,Iarguethatthecurrentincarnationofthenativist-empiricistdebateinartificialintelligencepresentsuswithasimilargoldenopportunity,inwhichwemightattemptoneoftherarestfeatsofintellectualalchemy:theconversionofatimelessphilosophicalriddleintoatestableempiricalquestion.For,ifwecouldapplythedistinctiontothedeeplearningdebatewithoutconfusionorcaricature,thenwecouldsimplybuildsomeartificialagentsaccordingtonativistprinciples,andotherartificialagentsaccordingtoempiricistprinciples,andseewhichonesareultimatelythemostsuccessfulorhuman-like.Specifically,wecanmanuallyprogramthenativistsystemswithinnateabstractknowledge,andendowempiricistsystemswithgeneralcapacitiestolearnabstractknowledgefromsensoryexperience,andcomparetheperformanceofthesystemsonarangeofimportanttasks.Crucially,however,theempiricistsinthiscompetitionmustbeallowedmorerawmaterialsthanMarcus’formalspecificationallows,ifweaimtoholdafairandinformativecompetition.
Ifwecouldaccomplishthisconversion,philosophersandcomputerscientistswouldbothreaptherewards.Onthephilosophyside,empiricistshavefrequentlybeenaccusedofappealingtomagicatcriticalpointsintheirtheoriesofrationalcognition.LockeandHume,forexampleoftenassertedthatthemindperformssomeoperationwhichallowsittoextractsomeparticularbitofabstractknowledgefromexperiencebut—giventhescantunderstandingofthebrain’soperationsavailableatthetime—theycouldnotexplainhow.Carefullyexaminingthedetailsofrecentdeeplearningachievementsmightredeemsomeofthelargestsuchpromissorynotes,byshowinghowphysicalsystemsbuiltaccordingtoempiricistprinciplescanactuallyperformtheseoperations.Indexingthephilosophicaldebatetothesesystemscanfurtherimproveitsclarity;wherephilosophicalslogansarevagueandsubjecttointerpretation,computationalmodelsareprecise,withalltheirassumptionsexposedforphilosophicalscrutinyandempiricalvalidation.Wheresuccessful,theplausibilityoftheempiricistapproachtorationalcognitionsubstantiallyincreasesasaresult.Ofthebenefitstocomputerscience,philosophershavethoughtlongandhardaboutthechallengeofprovidingacompleteapproachtothehumanmindthatisconsistentwithempiricistconstraints,includinghowthemind’svariouscomponentsmightinteractandscaleuptothehighestformsofabstractknowledgeandrationalcognition.
Deeplearningisonlynowreachingfortheseheightsinitsmodelingambitions(e.g.GoyalandBengio2020),andsotheremaystillyetbeinsightstominefromthehistoryofempiricistphilosophythatcanbetransmutedintothenextengineeringinnovations.
Totheseends,Iheremountaninterdisciplinaryinvestigationintotheprospectsandimplicationsofrecentachievementsindeeplearning,combininginsightsfrombothcomputerscienceandphilosophy.Doingsocanbothanimatecurrentengineeringresearchwiththewarmthandwisdomofaclassicphilosophicaldebate,whilstsimultaneouslyrenderingthetermsofthatdebateclearerthantheyhaveyetbeeninitslonganddistinguishedhistory.Nevertheless,Iknowthatsuchaninterdisciplinaryprojectisbesetwithitsowndistinctiverisk.RichardEvans—aninterdisciplinaryresearcheratDeepMindwhohassoughttocreatemorepowerfuldeeplearningsystemsbyaugmentingthemwithlogicalmaximsthatheextractsfromKant’sCritiqueofPureReason(includingKant’saforementionedmaximofsimultaneity)—hasissuedasalutarywarningforprojectsembarkingundersuchambitions:
Thisisaninterdisciplinaryprojectandassuchisinever-presentdangeroffallingbetweentwostools,
neitherphilosophicallyfaithfultoKant’sintentionsnorcontributingmeaningfullytoAIresearch.Kanthimselfprovides:‘thewarningnottocarryonatthesametimetwojobswhichareverydistinctinthewaytheyaretobehandled,foreachofwhichaspecialtalentisperhapsrequired,andthecombinationofwhichinonepersonproducesonlybunglers.’[AK4:388]Thedangerwithaninterdisciplinaryproject,partAIandpartphilosophy,isthatbothpotentialaudiencesareunsatisfied.(Evans2020)
WemusttakeEvans’s(andKant’s)warningtoheart.Yet,wemustalsoacknowledgethat,inpartbecausedeeplearningisimplicatedinthenature-nurturedistinction,philosophersareparticularlysuitedtoundertaketheproject.Whateverourotherbungles,wehaveexperiencetendingtothisparticularfire.Toproceed,however,wemustdiscardstoolsaltogether.Wewillbebetterabletogaugethecurrentandfutureachievementsofdeeplearningbyinsteadbuildingamoreaccommodatingbench,withampleroomforaspectrumofdistinctivebackgroundsandexpertise.Giventheintensityofthecurrentdiscussionamongsttheoristsgrapplingwithdeeplearning’spotential,themostproductivewayforwardinvolvesloweringthedebate’stemperatureuntilthesmokeclears,andinvitingtheoristsfromavarietyofbackgroundswithdistinctiveexpertiseandastakeindeeplearning’simplicationstopatientlyworkthroughthedetailstogether.
Howtosimmerthingsdown:FromFormsandslatestostylesoflearning
Thankstorigorousinvestigationinseveraldisciplines,todayweknowthatnearlyallknowledgeoriginatesfromacombinationofbothinnateandexperientialfactors.Bothradicalnativismandradicalempiricismare,inshort,false.Despitethis,morenuancedexpositionsofthedistinctionbetweenempiricismandnativismremaintheexceptionandhavebeenalmostentirelyabsentfromdiscussionsoverdeeplearning.9Withoutabetterwaytounderstandthesubstanceofthedistinction,therecognitionofthisecumenicaloutcomecarries,onbothsides,thethreatofobliteration.ThismaybewhyLockeandHume’se
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标代理公司年度工作总结
- 路基路面课程设计总监
- 水泥企业安全生产管理制度
- 印刷原纸采购合同(2篇)
- 南瓜种植施工合同(2篇)
- 楼道课程设计素材
- 冬季消防安全工作方案
- 清华大学在线课程设计
- 水厂安全生产应急预案
- 区域保护代理合同(2篇)
- 学前儿童数学教育PPT全套教学课件
- 中小学校财务管理案例分析
- 《我们小点儿声》评课报告
- 比亚迪新能源汽车分析五力模型
- 面向双碳战略,打造物流企业零碳路线图 2023 -智慧货运中心 宋苏
- 教育信息处理教学分析第四章
- (完整版)全国各省份城市明细表
- 餐饮部服务流程演示文稿
- 周洁名园长工作室个人三年发展规划
- 2020-2022全国高考真题英语汇编:阅读理解A篇
- GB/T 32072-2015带传动抗静电同步带的导电性要求和试验方法
评论
0/150
提交评论