广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题含解析_第1页
广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题含解析_第2页
广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题含解析_第3页
广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题含解析_第4页
广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆市端州区南国中学英文学校2024年数学八年级下册期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.1442.下列各式正确的是(

)A.32=±3

B.(-3)2=±3

C.(-3)2=3

D.(-3)23.下列从左到右的变形,是因式分解的是A. B.C. D.4.(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A、小莹的速度随时间的增大而增大 B、小梅的平均速度比小莹的平均速度大C、在起跑后180秒时,两人相遇 D、在起跑后50秒时,小梅在小莹的前面5.下列各式:,,+y,,,其中分式共有()A.1个 B.2个 C.3个 D.4个6.使分式有意义的的值是()A. B. C. D.7.下列各命题都成立,其中逆命题也成立的是()A.若a>0,b>0,则a+b>0B.对顶角相等C.全等三角形的对应角相等D.平行四边形的两组对边分别相等8.若,则下列不等式一定成立的是().A. B. C. D.9.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.610.下列各点中,在反比例函数y=图象上的是()A.(2,3) B.(﹣1,6) C.(2,﹣3) D.(﹣12,﹣2)二、填空题(每小题3分,共24分)11.在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________12.关于的一元二次方程有两个不相等的实数根,则的取值范围是_______.13.已知:,则______.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.15.如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.16.一个多边形的内角和与外角和的比是4:1,则它的边数是.17.若,则y_______(填“是”或“不是”)x的函数.18.如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠=_________度.三、解答题(共66分)19.(10分)如图,在平行四边形的对角线上存在,两个点,且,试探究与的关系.20.(6分)(1)计算:;(2)已知,,求的值21.(6分)如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1(1)分别求出这两个函数的解析式;(2)求ΔAOB的面积;(3)点P在x轴上,且ΔPOA是等腰三角形,请直接写出点P的坐标.22.(8分)如图,点E,F在菱形ABCD的对边上,AE⊥BC.∠1=∠1.(1)判断四边形AECF的形状,并证明你的结论.(1)若AE=4,AF=1,试求菱形ABCD的面积.23.(8分)已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K,过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE,求证:CH=FK;(3)如图3,过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.24.(8分)已知:如图,在菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.25.(10分)计算:(48-418)-(313-226.(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,点E、F为线段BD的两个三等分点,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72;故选:C.【点睛】本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.2、C【解析】

根据二次根式的性质a2【详解】解:A.32=3B.(-3)2=3C.(-3)2=32=3,D.(-3)2=32故选C.【点睛】本题考查了二次根式的性质与化简.熟练掌握二次根式的性质a23、D【解析】

把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4、D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.5、B【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式.利用这点进行解题即可.【详解】在,,,,,中是分式的有:,,故B正确.【点睛】本题考查的是分式的定义,解题的关键是找到分母中含有字母的式子,同时一定要注意π不是字母.6、D【解析】

分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.【详解】若分式有意义,则x﹣1≠0,解得:x≠1.故选D.【点睛】本题考查了分式有意义的条件:当分母不为0时,分式有意义.7、D【解析】

分别找到各选项的逆命题进行判断即可.【详解】A.的逆命题为若a+b>0,则a>0,b>0,明显错误,没有考虑b为负数且绝对值小于a的情况,B.的逆命题为相等的角都是对顶角,明显错误,C.的逆命题为对应角相等的三角形为全等三角形,这是相似三角形的判定方法,故错误,D.的逆命题为两组对边分别相等的四边形是平行四边形,这是平行四边形的判定,正确.故选D.【点睛】本题考查了真假命题的判定,属于简单题,找到各命题的逆命题是解题关键.8、C【解析】

按照不等式的性质逐项排除即可完成解答.【详解】∵x>y∴,A错误;3x>3y,B错误;,即C正确;,错误;故答案为C;【点睛】本题考查了不等式的基本性质,即给不等式两边同加或减去一个整数,不等号方向不变;给不等式两边同乘以一个正数,不等号方向不变;给不等式两边同乘以一个负数,不等号方向改变;9、C【解析】

先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.10、A【解析】

根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.【详解】解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,∴点(2,3)在反比例函数y=图象上.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.二、填空题(每小题3分,共24分)11、20或22【解析】

根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22【点睛】本题主要考查等腰直角三角形的性质,关键在于确定宽的长.12、q<1【解析】

解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案为q<1.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.13、【解析】

首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.【详解】解:由题意得:,∴x=-2,∴y=3,∴,故答案为:.【点睛】本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.14、AB=CD(答案不唯一)【解析】

由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【详解】解:添加条件为:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.故答案为AB=CD(答案不唯一).【点睛】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.15、1.【解析】

先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案为:1.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.16、1.【解析】

多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n﹣2)•180=4360,解得:n=1.则此多边形的边数是1.故答案为1.17、不是【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.【点睛】本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.18、10【解析】

根据旋转的性质找到对应点、对应角进行解答.【详解】∵△ABC绕点A逆时针旋转50°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC-∠BAB′=1°.故答案是:1.【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.三、解答题(共66分)19、见解析.【解析】

由,得到BQ=DP,再根据平行四边形性质可得AD=BC,AD∥BC,可证△ADP≌△CBQ(SAS),即可得:AP=CQ,∠APD=∠CQB.可得∠APB=∠DQC,结论可证.【详解】解:AP=CQ,AP∥CQ;理由:∵四边形ABCD是平行四边形,

∴AD=BC,AD∥BC

∴∠ADP=∠CBQ,

∵BP=DQ,∴DP=BQ

∴△ADP≌△CBQ(SAS),

∴AP=CQ,∠APD=∠CQB.

∵∠APB=180°-∠APD,∠DQC=180°-∠CQB

∴∠APB=∠DQC

∴AP∥CQ.∴AP=CQ,AP∥CQ【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质,能利用平行四边形找到证明全等的条件是解答此题的关键.20、(1);(2)11.【解析】

(1)根据实数的性质进行化简即可求解;(2)根据完全平方公式与平方差公式即可求解.【详解】解:(1)原式;(2)【点睛】此题主要考查整式的运算,解题的关键是熟知实数的性质及乘法公式的应用.21、(1)y=34x;y=2x-5;(2)10;(3)(-5,0)或(5,0)或【解析】

(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.【详解】解:(1)∵正比例函数y=k1x∴4k∴k∴正比例函数解析式为y=如图1中,过A作AC⊥x轴于C,在RtΔAOC中,OC=4,AC=3AO=∴OB=OA=5∴B(0,-5)∴4k∴一次函数解析式为y=2x-5(2)如图1中,过A作AD⊥y轴于D,∵A(4,3)∴AD=4∴(3))如图2中,当OP=OA时,P1(−5,0),P2(5,0),当AO=AP时,P3(8,0),当PA=PO时,线段OA的垂直平分线为y=−43x+∴P4(∴满足条件的点P的坐标(-5,0)或(5,0)或(8,0)或(【点睛】此题考查一次函数综合题,解题关键在于作辅助线.22、四边形AECF是矩形,理由见解析;(1)菱形ABCD的面积=10.【解析】

(1)由菱形的性质可得AD=BC,AD∥BC,∠BAD=∠BCD,由∠1=∠1可得∠EAF=∠FCB=90°=∠AEC,可得四边形AECF是矩形;

(1)由勾股定理可求AB的值,由菱形的面积公式可求解.【详解】解:(1)四边形AECF是矩形

理由如下:

∵四边形ABCD是菱形

∴AD=BC=AB,AD∥BC,∠BAD=∠BCD,

∵AE⊥BC

∴AE⊥AD

∴∠FAE=∠AEC=90°

∵∠1=∠1

∴∠BAD-∠1=∠BCD-∠1

∴∠EAF=∠FCB=90°=∠AEC

∴四边形AECF是矩形

(1)∵四边形AECF是矩形

∴AF=EC=1

在Rt△ABE中,AB1=AE1+BE1,

∴AB1=16+(AB-1)1,

∴AB=5

∴菱形ABCD的面积=5×4=10【点睛】本题考查了菱形的性质,矩形的判定和性质,勾股定理,熟练运用菱形的性质是本题的关键.23、(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】

(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2,再由FG是BC的中垂线,可得BG=CG,∠CGT=∠FGK=∠BGT=2,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据,可得关于m的方程,解方程求得m的值即可求得答案.【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE,HP⊥CD,垂足分别为M、P,∵CQ=CE,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM=DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2,∵FG是BC的中垂线,∴BG=CG,∠CGT=∠FGK=∠BGT=2,∵∠CHG=∠BCE=90°-2,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2,∴HN∥BG,∴四边形HGBN是平行四边形,∴HG=BN,HN=BG=CG=FG,∴△HNC≌△KGF,∴GK=CN,∠HNC=∠FGK=∠NHT=2,∴HT=CT=TN,∵FH-HG=1,∴设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,∵GT=,∴CN=2HT=11+2m,∵,∴∴(舍去),,∴CN=GK=2HT=25.【点睛】本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.24、(1)证明见解析;(2)AB⊥BC时,四边形AEOF正方形.【解析】

(1)根据中点的定义及菱形的性质可得BE=DF,∠B=∠D,BC=CD,利用SAS即可证明△BCE≌△DCF;(2)由中点的定义可得OE为△ABC的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论