江苏省宿迁2024年八年级数学第二学期期末考试模拟试题含解析_第1页
江苏省宿迁2024年八年级数学第二学期期末考试模拟试题含解析_第2页
江苏省宿迁2024年八年级数学第二学期期末考试模拟试题含解析_第3页
江苏省宿迁2024年八年级数学第二学期期末考试模拟试题含解析_第4页
江苏省宿迁2024年八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省宿迁2024年八年级数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示的图象反映的过程是:宝室从家跑步去体育馆,在那里锻炼了一段时间后又走到文具店去买铅笔,然后散步回家图中x表示时间,y表示宝宝离家的距离,那么下列说法正确的是A.宝宝从文具店散步回家的平均速度是B.室宝从家跑步去体育馆的平均速度是C.宝宝在文具店停留了15分钟D.体育馆离宝宝家的距离是2.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)3.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为A.(176,145°) B.(176,35°) C.(100,145°) D.(100,35°)4.已知□ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.285.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条 B.4条 C.5条 D.6条6.在直角坐标系中,线段是由线段平移得到的,已知则的坐标为()A. B. C. D.7.将分式方程去分母,得到正确的整式方程是()A. B. C. D.8.如果a为任意实数,下列各式中一定有意义的是()A. B. C. D.9.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,1010.如图,在四边形中,,交于,平分,,下面结论:①;②是等边三角形;③;④,其中正确的有A.1个 B.2个 C.3个 D.4个11.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg12.已知:等边三角形的边长为6cm,则一边上的高为()A. B.2 C.3 D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∥AC,CE∥BD,则OE的长为_____.14.如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.15.如图,在□ABCD中,对角线AC和BD交于点O,点E为AB边上的中点,OE=2.5cm,则AD=________cm。16.要使分式有意义,应满足的条件是__________17.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。18.将直线向上平移个单位后,可得到直线_______.三、解答题(共78分)19.(8分)化简:.20.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE求证:四边形BECD是矩形.21.(8分)如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为.22.(10分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为;(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;(3)求(2)中四边形ABCD的周长和面积.23.(10分)先化简,再求值:,其中x=-1.24.(10分)已知关于的一元二次方程,(1)求证:无论m为何值,方程总有两个不相等的实数根;(2)当m为何值时,该方程两个根的倒数之和等于1.25.(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,AD⊥BD,且AB=10,AD=6,求AC的长.(结果保留根号)26.如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据特殊点的实际意义即可求出答案.【详解】解:A、宝宝从文具店散步回家的平均速度是,正确;B、室宝从家跑步去体育馆的平均速度是,错误;C、宝宝在文具店停留了分钟,错误;D、体育馆离宝宝家的距离是,错误.故选:A.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.2、B【解析】

平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3、A【解析】

根据题意,画出坐标系,再根据题中信息进行解答即可得.【详解】建立坐标系如图所示,∵“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.【点睛】本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.4、B【解析】

根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质5、D【解析】

根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,再证得△ABO是等边三角形,推出AB=AO=8=DC,由此即可解答.【详解】∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故选D.【点睛】本题考查了矩形性质和等边三角形的性质和判定的应用,矩形的对角线互相平分且相等,矩形的对边相等.6、B【解析】

根据点A和点A′的坐标判断出平移方式,根据平移方式可得点的坐标.【详解】解:∵点A的坐标为(−2,3),A′的坐标为(3,4),∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,∵点B的坐标为(−3,1),∴点B′的坐标为(2,2),故选:B.【点睛】此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7、A【解析】将分式方程去分母得,故选A.8、C【解析】

解:选项A、B、D中的被开方数都有可能是负数,选项C的被开方数,一定有意义.故选C.9、B【解析】

欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.10、C【解析】

由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,

∴四边形AECD是平行四边形,

∵AD=DC,

∴四边形AECD是菱形,

∴AE=EC=CD=AD,

∴∠EAC=∠ECA,

∵AE平分∠BAC,

∴∠EAB=∠EAC,

∴∠EAB=∠EAC=∠ECA,

∵∠ABC=90°,

∴∠EAB=∠EAC=∠ECA=30°,

∴BE=AE,AC=2AB,①正确;

∵AO=CO,

∴AB=AO,

∵∠EAB=∠EAC=30°,

∴∠BAO=60°,

∴△ABO是等边三角形,②正确;

∵四边形AECD是菱形,

∴S△ADC=S△AEC=AB•CE,

S△ABE=AB•BE,

∵BE=AE=CE,

∴S△ADC=2S△ABE,③错误;

∵DC=AE,BE=AE,

∴DC=2BE,④正确;

故选:C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.11、A【解析】

根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=1.故选A.【点睛】本题考查的是与一次函数图象结合用一次函数解决实际问题,本题关键是理解一次函数图象的意义以及与实际问题的结合.12、C【解析】

根据等边三角形的性质三线合一求出BD的长,再利用勾股定理可求高.【详解】如图,AD是等边三角形ABC的高,根据等边三角形三线合一可知BD=BC=3,∴它的高AD==,故选:C.【点睛】本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理.直角三角形两条直角边的平方和等于斜边的平方.二、填空题(每题4分,共24分)13、1【解析】

由菱形的性质可得BC=CD=1,AC⊥BD,由题意可证四边形ODEC是矩形,可得OE=CD=1.【详解】解:∵四边形ABCD是菱形,∴BC=CD=1,AC⊥BD,∵DE∥AC,CE∥BD,∴四边形ODEC是平行四边形,且AC⊥BD,∴四边形ODEC是矩形,∴OE=CD=1,故答案为1.【点睛】本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC是矩形是解题的关键.14、【解析】

根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.【详解】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,又∵矩形ABCD的面积为1,∴四边形AnBnCnDn的面积=1×=,故答案为:.【点睛】本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.15、5【解析】

由平行四边形的对角线互相平分得AO=OC,结合E为AB的中点,则OE为△ABC的中位线,得到BC=2OE,从而求出BC的长.【详解】∵四边形ABCD是平行四边形,∴OA=OC,又∵E为AB的中点,∴OE为△ABC的中位线,∴BC=2OE=2×2.5=5cm故答案为:5.【点睛】此题主要考查中位线的性质,解题的关键是熟知中位线的判断与性质.16、【解析】

本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x-2≠1,

∴x≠2,

故答案是:x≠2.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.17、y=3x-4【解析】试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.考点:一次函数的图像的平移18、【解析】

根据“上加下减”原则进行解答即可.【详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【点睛】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.三、解答题(共78分)19、【解析】

先对原式中能因式分解的分子和分母进行因式分解,然后再对括号内进行运算,最后将除变为乘进行运算即可.【详解】解:原式====【点睛】本题考查了分式的四则混合运算.其关键在于:①:先对能因式分解的分子和分母因式分解;②是灵活应用除以一个数就等于乘以它的倒数.20、证明见解析【解析】

根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【详解】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.21、(1)见解析;(2)见解析;(3)1【解析】

(1)根据平行线的性质得出,根据全等三角形的判定得出,根据全等三角形的性质得出即可;(2)根据平行四边形的判定推出即可;(3)求出高和,再根据面积公式求出即可.【详解】解:(1)证明:∵点E是BD的中点,∴BE=DE,∵AD∥BC,∴∠ADE=∠CBE,在△ADE和△CBE中∴△ADE≌△CBE(ASA),∴AE=CE;(2)证明:∵AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵DF=CD,∴DF=AB,即DF=AB,DF∥AB,∴四边形ABDF是平行四边形;(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,∴∠BDC=∠F=30°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论