




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市江都区五校2024届八年级下册数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A.cm B.cm C.cm D.5cm2.下列各式中,最简二次根式为()A. B. C. D.3.如图,在中,,分别为,的中点,若,则的长为A.3 B.4 C.5 D.64.正方形具有而菱形不具有的性质是()A.四边相等 B.对角线相等C.两组对边分别平行 D.一条对角线平分一组对角5.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为()A.同一排 B.前后同一条直线上 C.中间隔六个人 D.前后隔六排6.解分式方程,去分母后正确的是()A. B.C. D.7.下列各点在反比例函数图象上的是()A. B. C. D.8.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A. B. C. D.29.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)10.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+211.如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为()A. B. C. D.12.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是()A.1个 B.1个 C.3个 D.4个二、填空题(每题4分,共24分)13.计算:_______,化简__________.14.已知点,,直线与线段有交点,则的取值范围是______.15.将函数y=12x-2的图象向上平移_____个单位后,所得图象经过点(0,16.一元二次方程的两根为,,若,则______.17.分式方程的解是_____.18.如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.三、解答题(共78分)19.(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.20.(8分)“金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.21.(8分)已知:如图,,,求的面积.22.(10分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.23.(10分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.24.(10分)计算:(1).(2).25.(12分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.26.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
参考答案一、选择题(每题4分,共48分)1、B【解析】如图所示:∵菱形的周长为20cm,∴菱形的边长为5cm,∵两邻角之比为1:2,∴较小角为60°,∴∠ABO=30°,AB=5cm,∵最长边为BD,BO=AB⋅cos∠ABO=5×=(cm),∴BD=2BO=(cm).故选B.2、B【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.【详解】A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;B符合最简二次根式的条件,故正确;C被开方数中含有分母6,不是最简二次根式,故错误;D被开方数中含有能开得尽方的因式,不是最简二次根式,故错误;故选:B.【点睛】本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.3、D【解析】
根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】,分别为,的中点,,故选:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4、B【解析】
根据正方形的性质以及菱形的性质,即可判断.【详解】正方形的边:四边都相等,两组对边分别平行;菱形的边:四边都相等,两组对边分别平行;正方形的对角线:互相垂直平分且相等,每一条对角线平分一组对角;菱形的对角线:互相垂直平分,每一条对角线平分一组对角;∴正方形具有而菱形不具有的性质是:对角线相等.故选B.【点睛】本题考查了正方形的性质、菱形的性质,熟练掌握正方形和菱形的性质是解题的关键.5、A【解析】
∵(12,6)表示12排6号,(12,12)表示12排12号,
∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
故选A.【点睛】考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.6、D【解析】
两个分母分别为x+1和x2-1,所以最简公分母是(x+1)(x-1),方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】方程两边都乘(x+1)(x−1),得x(x−1)−x−2=x2−1.故选D.【点睛】本题考查了解分式方程的步骤,正确找到最简公分母是解题的关键.7、C【解析】
由可得,xy=-5,然后进行排除即可.【详解】解:由,即,xy=-5,经排查只有C符合;故答案为C.【点睛】本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.8、A【解析】
连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【详解】连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF=,∵H是AF的中点,∴CH=AF=.故选A.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.9、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.10、B【解析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换11、B【解析】
根据三角形中位线定理解答.【详解】∵点M,N分别是AC,BC的中点,∴AB=2MN=38(m),故选B.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.12、D【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;③由整理即可判断结论③正确;④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.【详解】解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=-4代入y=nx+4n,得y=-4n+4n=0,∴直线y=nx+4n一定经过点(-4,0).故结论②正确;③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,∴当x=-1时,y=1+m=-1n+4n,∴m=1n-1.故结论③正确;④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,∴当x>-1时,nx+4n>-x+m,故结论④正确.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.二、填空题(每题4分,共24分)13、【解析】
先对通分,再化简计算得到答案;根据二次根式对进行化简,再去括号计算,即可得到答案.【详解】========【点睛】本题考查分式的减法计算、二次根式的加减混合运算,解题的关键是掌握分式的减法计算、二次根式的加减混合运算.14、﹣1≤m≤1.【解析】
分别把点,代入直线,求得m的值,由此即可判定的取值范围.【详解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.故答案为:﹣1≤m≤1.【点睛】本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.15、3【解析】
根据一次函数平移“上加下减”,即可求出.【详解】解:函数y=12图象需要向上平移1-(-2)=3个单位才能经过点(0,1).故答案为:3.【点睛】本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.16、-7【解析】
先用根与系数的关系,确定m、n的和与积,进一步确定a的值,然后将m代入,得到,最后再对变形即会完成解答.【详解】解:由得:m+n=-5,mn=a,即a=2又m是方程的根,则有,所以+(m+n)=-2-5=-7故答案为-7.【点睛】本题主要考查了一元二次方程的解和多项式的变形,其中根据需要对多项式进行变形是解答本题的关键.17、【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.【详解】原式通分得:去分母得:去括号解得,经检验,为原分式方程的解故答案为【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.18、1【解析】
由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.【详解】∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.故答案为:1.【点睛】本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.三、解答题(共78分)19、(1)甲;(2)乙.【解析】
(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.【详解】(1)=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲;(2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.20、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.【解析】
(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.(2)根据预计投入资金至多80000元,列不等式可解答.【详解】解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,由题意得:,解得:x=800,经检验:x=800是原分式方程的解,∴B型展台价格:x+400=800+400=1200,答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)设租用B型展台a个,则租用A型展台(a+22)个,800(a+22)+1200a≤80000,a≤31.2,答:B型展台最多可租用31个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.21、14【解析】试题分析:构造矩形,用矩形的面积减去3个直角三角形的面积即可求得.试题解析:如图,构造矩形,,,,,.22、(1)见解析(2)见解析【解析】
(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,
∴AF=FG=GC.
又∵点D是边AB的中点,
∴DH∥BG.
同理:EH∥BF.
∴四边形FBGH是平行四边形,
连结BH,交AC于点O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四边形FBGH是菱形;
(2)∵四边形FBGH是平行四边形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四边形ABCH是平行四边形.
∵AC⊥BH,AB=BC,
∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.23、20,1【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时锅炉工用工合同标准文本
- 技术培训课程安排计划
- 2025购销合同简易范本
- 转变思维方式的年度计划
- 临时变更合同标准文本
- 从化学校食堂承包合同标准文本
- 2025护理员用工合同
- 公寓合伙合同范例
- 上海学校食堂外包合同标准文本
- 2025高性能单纵模固体激光器采购合同
- 《阻燃材料与技术》课件 第5讲 阻燃塑料材料
- 幼儿园教师培训:诺如病毒防控
- 班风学风建设主题班会课件(图文)
- 企业治安防范教育培训
- 2024年全国《汽车加气站操作工》安全基础知识考试题库与答案
- 2023年北京大学留学生入学考试英语试卷
- 公司事故隐患内部报告奖励机制
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
- β内酰胺类抗菌药物皮肤试验指导原则2024课件
- 全过程工程咨询管理服务方案投标方案(技术方案)
- 光储电站储能系统调试方案
评论
0/150
提交评论