河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题含解析_第1页
河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题含解析_第2页
河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题含解析_第3页
河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题含解析_第4页
河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市第四中学2024年八年级下册数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.等腰三角形的两条边长分别为3和4,则其周长等于()A.10 B.11 C.10或11 D.不确定2.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1353.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G4.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,95.菱形与矩形都具有的性质是().A.对角相等 B.四边相等 C.对角线互相垂直 D.四角相等6.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案7.已知三角形两边长为2和6,要使该三角形为直角三角形,则第三边的长为()A. B. C.或 D.以上都不对8.如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温随时间的变化而变化的情况,下列说法错误的是()A.这一天凌晨4时气温最低B.这一天14时气温最高C.从4时至14时气温呈上升状态(即气温随时间增长而上升)D.这一天气温呈先上升后下降的趋势9.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是210.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()A. B.C. D.11.如图,在矩形中,,,点是边上一点,将沿折叠,使点落在点处.连结,当为直角三角形时,的长是()A. B. C.或 D.或12.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤2二、填空题(每题4分,共24分)13.在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________14.如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.15.已知,如图△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,则AB=_____cm.16.命题“等腰三角形两底角相等”的逆命题是_______17.化简+的结果是________.18.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.三、解答题(共78分)19.(8分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.(1)若按三项考试成绩的平均分选拔,应选谁参赛;(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.代数几何综合甲859275乙70839020.(8分)按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)21.(8分)计算:(1)(2),,求的值.22.(10分)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,出发多少秒后,四边形APQC的面积为16cm2?23.(10分)已知:如图,在矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交AD、BC于点E,F,求证:BE=DF.24.(10分)如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.(1)求证:四边形EHGF是平行四边形;(2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.25.(12分)如图,将矩形ABCD沿EF折叠,使点C恰好落在AB边的中点C'上,点D落在D'处,C'D'交AE于点M.若AB=6,26.已知:如图,在平面直角坐标系xOy中,A(0,8),B(0,4),点C在x轴的正半轴上,点D为OC的中点.(1)当BD与AC的距离等于2时,求线段OC的长;(2)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线BD的解析式.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据等腰三角形的性质即可判断.【详解】∵等腰三角形的两条边长分别为3和4∴第三边为3或4,故周长为10或11,故选C【点睛】此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.2、C【解析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.3、B【解析】

根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,

故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.4、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选B.5、A【解析】

根据矩形、菱形的性质分别判断即可解决问题.【详解】A.对角相等,菱形和矩形都具有的性质,故A正确;B.四边相等,菱形的性质,矩形不具有的性质,故B错误;C.对角线互相垂直,矩形不具有的性质,故C错误;D.四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:A.【点睛】此题考查菱形的性质,矩形的性质,解题关键在于掌握各性质定义.6、B【解析】

根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.7、C【解析】

根据勾股定理,分所求第三边为斜边和所求第三边为直角边两种情况计算即可.【详解】解:根据勾股定理分两种情况:(1)当所求第三边为斜边时,第三边长为:;(1)当所求第三边为直角边时,第三边长为:;所以第三边长为:或.故选C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a1+b1=c1.也就是说,直角三角形两条直角边的平方和等于斜边的平方.8、D【解析】

根据气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;B.这一天14时气温最高为8℃,故本选项正确;C.从4时至14时气温呈上升状态,故本选项正确;D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;故选:D.【点睛】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.9、B【解析】

根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题10、C【解析】

本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.【详解】最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.故本题选C.【点睛】本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.11、D【解析】

当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB=EF,AB=AF=1,可计算出CF=4,设BE=x,则EF=x,CE=8-x,然后在Rt△CEF中运用勾股定理可计算出x.②当点F落在AD边上时,如图2所示.此时四边形ABEF为正方形.【详解】解:当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,∴CF=10-1=4,设BE=x,则EF=x,CE=8-x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8-x)2,解得x=3,∴BE=3;②当点F落在AD边上时,如图2所示.此时ABEF为正方形,∴BE=AB=1.综上所述,BE的长为3或1.故选D.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.12、B【解析】

解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.二、填空题(每题4分,共24分)13、【解析】

先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.【详解】解:如图所示,∵∠ABC=90°,∠A=30°,AB=5,∴设BC=x,则AC=2x∵∴∴x=5∴BC=5,AC=10在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线∴∴△ADB的周长为:故答案为:【点睛】本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.14、【解析】

根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.【详解】设∵矩形纸片中,,现将其沿对折,使得点C与点A重合,点D落在处,∴,在中,,即解得,故答案为:.【点睛】本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.15、1【解析】

试题分析:有△ABC∽△AED,可以得到比例线段,再通过比例线段可求出AB的值.解:∵△ABC∽△AED∴又∵AE=AC﹣EC=10∴∴AB=1.考点:相似三角形的性质.16、有两个角相等的三角形是等腰三角形【解析】

根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.17、1【解析】

找到公分母x-3,再利用同分母相加减法则即可求解.【详解】+=-==1【点睛】本题考查了分式的化简,属于简单题,找到公分母是解题关键.18、±1.【解析】试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.考点:一次函数综合题.三、解答题(共78分)19、(1)选择甲;(2)选择乙.【解析】

(1)分别求出甲、乙的算术平均数进行选择即可;(2)分别求出甲、乙的加权平均数进行选择.【详解】解:(1),∵∴选择甲;(2)∵∴选择乙.故答案为(1)选择甲;(2)选择乙.【点睛】本题考查了算术平均数和加权平均数的求法.20、(1),;(2),【解析】

(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.【详解】(1)∴解得,,;(2)在这里,,b=-2,∴解得,,【点睛】本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:21、(1);(2).【解析】

(1)运用二次根式运算法则,直接计算即可;(2)首先转化代数式,然后代入即可得解.【详解】(1)原式=(2)=【点睛】此题主要考查二次根式的运算,熟练运用,即可解题.22、1【解析】

根据题意表示出四边形APQC的面积,进而得出方程求出答案.【详解】解:设t秒后,四边形APQC的面积为16cm1,

由题意得:S△ABC=×6×8=14(cm1),BP=6-t,BQ=1t,

∴14-•1t(6-t)=16,

解得:t1=1,t1=4,

当t=4时,BQ=1×4=8,

∵Q不与点C重合,

∴t=4不合题意舍去,

所以1秒后,四边形APQC的面积为16cm1.【点睛】此题主要考查了一元二次方程的应用,正确得出等量关系列出方程是解题关键.23、证明过程见解析【解析】

求证BE=DF,即求证△ABE≅△CDF.【详解】证明:∵∠ABD、∠CDB的平分线BE、DF分别交AD、BC于点E,F∴∠ABE=∠EBD,∠BDF=∠FDC又四边形ABCD为矩形∴∠ABD=∠CDB,AB=CD∴∠ABE=∠EBD=∠BDF=∠FDC在△ABE和△CDF中∠ABE=∠CDF∴△ABE≅△CDF∴BE=DF【点睛】本题主要考查了平行线以及全等三角形的性质,全等三角形的判定是解决本题的关键.24、(1)见解析;(2)1【解析】

(1)证EF是△ABC的中位线,HG是△DBC的中位线,得出EF∥BC,EF=BC,HG∥BC,HG=BC,则EF∥HG,EF=HG,即可得出结论;(2)由勾股定理求出BC=10,则EF=GH=BC=5,由三角形中位线定理得出EH=AD=,即可得出答案.【详解】证明:(1)∵E、F分别是AB、AC的中点,∴EF∥BC,EF=BC.∵H、G分别是DB、DC的中点,∴HG∥BC,HG=BC.∴HG=EF,HG∥EF.∴四边形EHGF是平行四边形.(2)∵BD⊥CD,BD=8,CD=6,∴BC===10,∵E、F、H、G分别是AB、AC、BD、CD的中点,∴EH=FG=AD=3.5,EF=GH=BC=5,∴四边形EHGF的周长=EH+GH+FG+EF=1.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理以及勾股定理;熟练掌握三角形中位线定理是解题的关键.25、AM=9【解析】

先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.【详解】解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9-x,∵BF2+BC′2=FC′2,∴x2+32=(9-x)2,解得:x=4,即BF=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠BFC′,∵∠A=∠B=90°,∴△AMC′∽△BC′F,∴A∵BC′=AC′=3,∴AM=94【点睛】本题主要考查了折叠的性质,矩形的性质,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论