河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题含解析_第1页
河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题含解析_第2页
河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题含解析_第3页
河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题含解析_第4页
河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省隆尧县北楼中学等2024届八年级下册数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点E是正方形ABCD对角线AC上,且EC=2AE,Rt△FEG的两条直角边EF、EG分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积()A.a2 B.a2 C.a2 D.a22.下列运算错误的是()A. B. C. D.3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.方程的解是()A. B. C. D.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第2018个正方形的边长为A.22017 B.22018 C. D.6.如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为(

)A.60° B.65° C.70° D.75°7.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<18.已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为()A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣29.一元二次方程4x2+1=3x的根的情况是(

)A.没有实数根

B.只有一个实数根

C.有两个相等的实数根

D.有两个不相等的实数根10.下列图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:=_______________.12.如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.13.如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.14.如果a2-ka+81是完全平方式,则k=________.15.已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.16.分解因式:m2nmn=_____。17.已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.18.分解因式:.三、解答题(共66分)19.(10分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=45,则当四边形DEFG为菱形时,点G的坐标为_____.20.(6分)某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:面试笔试成绩评委1评委2评委392889086(1)请计算小王面试平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.21.(6分)在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.(1)直接写出点B的坐标B(,)(2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.22.(8分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.23.(8分)为了了解某公司员工的年收入情况,随机抽查了公司部分员工年收入情况并绘制如图所示统计图.(1)请按图中数据补全条形图;(2)由图可知员工年收入的中位数是,众数是;(3)估计该公司员工人均年收入约为多少元?24.(8分)如图,在平行四边形ABCD中,AE、AF是平行四边形的高,,,,DE交AF于G.(1)求线段DF的长;(2)求证:是等边三角形.25.(10分)为了增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下面是将某班学生的立定跳远成绩(精确到0.01m),进行整理后,分成5组,画了的频率分布直方图的部分,已知:从左到右4个小组的频率分别是:0.05,0.15,0.30,0.35,第五小组的频数是1.(1)该班参加测试的人数是多少?(2)补全频率分布直方图.(3)若该成绩在2.00m(含2.00)的为合格,问该班成绩合格率是多少?26.(10分)请用合适的方法解下列一元二次方程:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L,只要证明,则可计算.【详解】解:根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L.四边形ABCD为正方形EL=EK为直角三角形故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线.2、C【解析】

根据二次根的运算法则对选项进行判断即可【详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.【点睛】本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键3、C【解析】

在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.4、C【解析】

根据方程即可得出两个一元一次方程,求出方程的解即可.【详解】解:由,得x=0,x+2=0∴故选C.【点睛】本题考查了解一元二次方程.能把一元二次方程转化为一元一次方程是解此题的关键.5、C【解析】分析:首先根据勾股定理求出AC、AE、AG的长度,可以看出每个正方形的边长都是前一个正方形边长的倍,即可解决问题.详解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3,……,∴第n个正方形的边长an=()n-1.∴第2018个正方形的边长a2018=()2.故选C.点睛:此题主要考查了正方形的性质、勾股定理及其应用问题;应熟练掌握正方形有关定理和勾股定理并能灵活运用,通过计算发现规律是解答本题的关键.6、C【解析】

先根据旋转得出△ABB'是等腰三角形,再根据旋转的性质以及平行四边形的性质,判定三角形AOB'和△DOC'都是等腰三角形,最后根据∠DOC'的度数,求得∠DC'B'的度数.【详解】由旋转得,∠BAB'=40°,AB=AB',∠B=∠AB'C',∴∠B=∠AB'B=∠AB'C'=70°,∵AD∥BC,∴∠DAB'=∠AB'C'=70°,∴AO=B'O,∠AOB=∠DOC'=40°,又∵AD=B'C',∴OD=OC',∴△ODC'中,∠DC'O=故选C.【点睛】考查了旋转的性质,解决问题的关键是掌握等腰三角形的性质与平行四边形的性质.在旋转过程中,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.7、B【解析】

根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【详解】解:根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,∴不等式组的解集为:x<﹣2,故选:B.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.8、C【解析】

因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.【详解】解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,则b=2,c=﹣3,故选:C.【点睛】本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.9、A【解析】

先求出△的值,再判断出其符号即可.【详解】解:原方程可化为:4x2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A.10、D【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故此选项错误;

B、既不是轴对称图形,也不是中心对称图形.故此选项错误;

C、不是轴对称图形,是中心对称图形.故此选项错误;

D、是轴对称图形,是中心对称图形.故此选项正确.

故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、【解析】分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.详解:原式=.点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.12、【解析】

连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.【详解】解:如图,连接OB,过点O作OD⊥AB于D,∵在的垂直平分线上,∴OB=OC,∵,,,∴OA2+OB2=32+42=25=AB2,∴△ABC为直角三角形,∵S△ABO=AO·OB=AB·OD,∴OD==.故答案为.【点睛】此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.13、(3,0)【解析】

∵点C与点E关于x轴对称,E点的坐标是(7,),∴C的坐标为(7,).∴CH=,CE=,∵△ACE是以ABCD的对角线AC为边的等边三角形,∴AC=.∴AH=1.∵OH=7,∴AO=DH=2.∴OD=3.∴D点的坐标是(3,0).14、±18.【解析】

利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵二次三项式a2-ka+81是完全平方式,∴k=±18,故答案为:±18.【点睛】此题考查完全平方式,解题关键在于掌握运算法则15、【解析】

根据即可列式求解.【详解】如图,∵∴∴点在上,∴,故.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.16、n(m-)2【解析】

原式提取n,再利用完全平方公式分解即可.【详解】解:原式=n(m2-m+)=n(m-)2,

故答案为:n(m-)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17、x<-1.【解析】试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,∴关于x的不等式ax+b>kx的解是x<-1.考点:一次函数与一元一次不等式.18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.三、解答题(共66分)19、(35,215)【解析】

作辅助线,构建全等三角形,证明ΔODN≅ΔCDM(AAS),得DN=DM,由中点得OD=25,根据直角三角形30度角的性质和勾股定理得:ON=5,DN=15,所以MN=EG=215,证明DF=OA=45【详解】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM//OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴ΔODN≅ΔCDM(AAS),∴DN=DM,∵OA=OC=45∴OD=25RtΔDON中,∴∠ODN=30°,∴ON=5,DN=∴MN=2DN=215∵四边形DEFG是菱形,∴DF⊥EG,DH=12DF∴Rt∴MG=EN,∵MG//EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=215∵BC//OA,DF⊥EG,EG⊥BC,∴DF//OA//BC,∵OD//AF,∴四边形DOAF是平行四边形,∴DF=OA=45∴DH=EN=1∴OE=ON+EN=35∴G(35,2故答案为:(35,2【点睛】本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20、(1)小王面试平均成绩为88分(2)小王的最终成绩为89.6分【解析】(1)(分)∴小王面试平均成绩为88分(2)(分)∴小王的最终成绩为89.6分21、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.【解析】

(1)根据正方形的边长为8和正方形的性质写出点B的坐标;

(2)①如图1,作辅助线,证明四边形PMCN是正方形,再证明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得结论;

②分两种情况:当PC将△PDE分成的两部分面积之比为1:2时,即G是ED的三等分点,根据面积法可知:EC与CD的比为1:2或2:1,列方程可得结论.【详解】解:(1)∵正方形OABC的边长为8,

∴B(8,8);

故答案为:8,8;

(2)①∠PED的大小不变;理由如下:

作PM⊥OC于M,PN⊥CB于N,如图1所示:

∵四边形OABC是正方形,

∴OC⊥BC,

∴∠MCN=∠PMC=∠PNC=90°,

∴四边形PMCN是矩形,

∵P是OB的中点,

∴N、M分别是BC和OC的中点,

∴MC=NC,

∴矩形PMCN是正方形,

∴PM=PN,∠MPN=90°,

∵∠DPE=90°,

∴∠DPN=∠EPM,

∵∠PND=∠PME=90°,

∴△DPN≌△EPM(ASA),

∴PD=PE,∴△DPE是等腰直角三角形,

∴∠PED=45°;

②如图2,作PM⊥OC于M,PN⊥CB于N,

若PC将△PDE的面积分成1:2的两部分,

设PC交DE于点G,则点G为DE的三等分点;

当点D到达中点之前时,如图2所示,CD=8-t,

由△DPN≌△EPM得:ME=DN=4-t,∴EC=CM-ME=4-(4-t)=t,

∵点G为EF的三等分点,

∴或

∵CP平分∠OCB,

∴或2,

即CD=2CE或CE=2CD,

∴8-t=2t或t=2(8-t),

t=或(舍);当点D越过中点N之后,如图3所示,CD=8-t,

由△DPN≌△EPM得:CD=8-t,DN=t-4

∴EC=CM+ME=4+(t-4)=t,

∵点G为EF的三等分点,

∴或

∵CP平分∠OCB,

∴或2,

即CD=2CE或CE=2CD,∴8-t=2t或t=2(8-t),

t=(舍)或;

综上所述,当PC将△PED分成的两部分的面积之比为1:2时,t的值为:秒或秒.【点睛】本题是四边形综合题目,考查了正方形的性质、坐标与图形性质、三角形中位线定理、全等三角形的判定与性质、面积法等知识;本题综合性强,难度适中.22、(1)证明见解析;(2)【解析】分析:(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;

(2)在直角三角形ADC中利用勾股定理求解即可.详解:(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,则CF为△DME的中位线,DF=FE;(2)由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴AC=ME,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中利用勾股定理得AC=,∴BE=.点睛:本题结合三角形的有关知识综合考查了平行四边形的性质,解题关键是理解中位线的定义,会用勾股定理求解直角三角形.23、(1)见解析;(2)15,15;(3)人均年收入为15.1万元.【解析】

(1)从两个统计图中得到C组15万元的有20人,占调查人数的40%,可求出调查人数,进而得到D组人数,补全条形统计图,(2)根据中位数、众数的意义和求法分别求出即可,排序后求出第25、26位的两个数的平均数即为中位数,出现次数最多的数是众数,(3)利用平均数的计算公式进行计算.【详解】解:(1)20÷40%=50人,50-3-11-20-2=14人,补全条形统计图如图所示:(2)员工年收入在15万元出现次数最多是20次,因此众数是15万,调查50人的收入从小到大排列后处在第25、26位的数据都是15万,因此中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论