![2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷(含答案解析)_第1页](http://file4.renrendoc.com/view12/M01/12/3C/wKhkGWYcBPaAZRMcAAFwaHt2BjU640.jpg)
![2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷(含答案解析)_第2页](http://file4.renrendoc.com/view12/M01/12/3C/wKhkGWYcBPaAZRMcAAFwaHt2BjU6402.jpg)
![2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷(含答案解析)_第3页](http://file4.renrendoc.com/view12/M01/12/3C/wKhkGWYcBPaAZRMcAAFwaHt2BjU6403.jpg)
![2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷(含答案解析)_第4页](http://file4.renrendoc.com/view12/M01/12/3C/wKhkGWYcBPaAZRMcAAFwaHt2BjU6404.jpg)
![2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷(含答案解析)_第5页](http://file4.renrendoc.com/view12/M01/12/3C/wKhkGWYcBPaAZRMcAAFwaHt2BjU6405.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年辽宁省鞍山市八年级(下)期末数学试卷
1.能与,司合并的二次根式是()
A.B.>/^8C.D.7^8
2.在正比例函数y=—"x图象上的点是()
A.(-1,-3)B.(-3,-1)C.(-1,3)D.(-3,1)
3.为了解甲,乙两种甜玉米产量的情况,农科院各用10块自然条件相同的试验田进试验,得到的各试验田
每公顷的产量绘制统计图如图,下列判断正确的是()
甲种甜玉米的产量乙种甜玉米的产量
f每公顷产蚩汽每公顷产量△
7.8
7.7
7.6
7.5
71
百’力就据序号
046◎’而嬴据序号
A.甲种甜玉米平均产量大B.乙种甜玉米平均产量大
C.甲种甜玉米产量波动大D.乙种甜玉米产量波动大
4.用一根长度为8cm的小木棍组成直角三角形,另外两根小木棍的长可以是()
A.6cm,8c/nB.1cm,ScmC.6cm,7cmD.6cm,lOc/n
5.某函数图象如图所示,那么函数y的变化规律()
A.y随x增大而增大
B.y随x增大而减小
C.y随x有时增大有时减小
D.x增大时y保持不变
6.一次函数y=kx+b的图象如图所示,则关于鼠沙的值正确的说法是(
A.fc>0,b>0
B.fc<0,b<0
C.k>0,b<0
D.fc<0,Z?>0
7.如图,在nABCC中,点E,F分别在边A8,8上,且BE=DF,连接E尸与AC交于点0,则下列结论:
①04=0C;②0E=0F;③AC=EF,其中正确结论的个数是()
A.0个B.1个C.2个D.3个
8.如图,学校在校园围墙边缘开垦一块四边形菜地ABCD,测得4B=9m,।।
pc\
BC=12m,CD=8m,AD=17m,且乙4BC=90。,这块菜地的面积是()\
A.48m2\
,―------L
B.114m2―---------
h
C.122m2
D.158m2
9.如图,△4BC中,点M,N分别是边48,AC上的点,3.MN//BC,将△4BC沿A
MN翻折,使点A的对称点A落在BC边上,若48=4.6cm,AC=4cm,BC=。
4.2cm,则△AMN的周长是()M/\
A.6.4cm/*\•\
B.8.5cm/\
--------------------------
C.8.8cmA
D.12.8cm
10.游泳池设有浅水区及深水区两个不同区域,其横截面如图所示,游泳馆每次
向空池注水的速度相同,注水时水的深度随时间的变化而变化,用函数图象刻I:::::::::::::::::::::::
画这种变化正确的是()
11.二次根式d2a+1有意义,则“的取值范围是.
12.矩形的边长分别为2和2「,两条对角线相交所形成的夹角中,锐角的度数是
13.某销售公司招聘一名项目经理,甲,乙,丙三人最后考核成绩如表:公司决定笔试成绩,面试成绩与计
算机操作成绩分别按3:5:2,计算平均成绩,那么应聘者会被录取.
应试者笔试成绩面试成绩计算机操作
甲889090
乙928590
丙909488
14.如图,由边长为1个单位长度的小正方形组成的网格中,点4,B,C都在小正方形
的格点上,贝吐4BC的度数是.
15.如图,河的两岸有4,8两个水文观测点,为方便联络,要在河上修一座木
桥MN(河的两岸互相平行,MN垂直于河岸),现测得A,B两点到河岸的距离
分别是5米,4米,河宽3米,且两点之间的水平距离为12米,则4M+MN+
NB的最小值是米.
16.计算:(。+q)2—(2门+门)(2门一门).
17.己知,石。2.449,求+Q下的近似值.(结果保留小数点后两位)
18.如图,直线y=x+2与x轴,y轴分别交于48两点,点C的坐标是(0,-4),点。在x轴正半轴上,
且OD=^OC,直线C。交直线AB于点E.
求:⑴△力BC的面积;
(2)点E的坐标.
19.已知,8。为矩形ABC。的对角线,完成如下操作,并解决问题.
(1)作8。的垂直平分线/;(不写画法,保留作图痕迹)
(2)在直线/上确定两点M,N,使四边形BMDN为正方形,简要阐述作法,并说明理由.
20.完成表格,在坐标系中画出函数y=x+:+1(%>0)的图象,根据图象回答问题:观察直线yi=3x(xN
0)的图象,当x取何值时yI>y?
11
X…124…
42
…・・・
y3
21.每年6月5日为世界环境日,某中学为增强学生的环保意识,开展了关于保护环境的知识竞赛,经过班
级推荐,共有50名学生参赛,其成绩统计如表:
成绩(单位:分
50<%<6060<x<7070<x<8080<x<9090<%<100
)
人数(单位:人
28121612
)
其中8090分的成绩如下:81,81,82,82,83,84,84,84,85,85,86,87,87,88,88,90;
请回答:
(1)直接写出此次竞赛成绩的中位数;
(2)根据表格估计此次竞赛成绩的平均数;
(3)根据数据,请写出两条可以获得的信息.
22.高速公路上A,8两地相距760千米,一辆货车从A地开往B地,同时一辆客车从B开往4地,已知货
车的行驶速度为每小时90千米,客车的行驶速度为每小时100千米.设货车与B地的距离为力(单位:千米),
客车与B地的距离为治(单位:千米);
(1)分别写出丫2与出发时间》的函数关系式;
(2)若距离8地400千米处有一服务区,两车均需要在此处加油和休息,请判断两是否会同时进入服务区,
并说明理由.
23.如图,在RtZkABC中,ZBAC=90。,乙4BC=30°,AC=2,点。是5c边中点,连接AD,过点8作BE〃/W,
过点AgAE“BC;
(1)判断四边形AO8E的形状,并证明结论;
(2)点M是线段BE上的动点,点N是线段AC上的动点,且8M=4N,连接MN交AO于点P,若四边形
8MPO是平行四边形时,求的值,并计算此时MN的长度.
答案和解析
1.【答案】B
【解析】解:C=V4x2=2「,
A、vHl=74x3=2c,不能与C合并,不符合题意;
B、<18=V9x2=能与,耳合并,符合题意;
C、V-24=V4x6=2/1,不能与,后合并,不符合题意;
D、=84x7=2。,不能与C合并,不符合题意;
故选:B.
根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.
本题考查的是同类二次根式的概念、二次根式的性质,把几个二次根式化为最简二次根式后,如果它们的
被开方数相同,就把这几个二次根式叫做同类二次根式.
2.【答案】D
【解析】解:y=-1x,
A.x=-1,y=不符合题意;
B.x=-3,y=1,不合题意;
C.x=-1,y=不符合题意;
£>.%=—3,y=1,合题意.
故选:D.
根据y=所以只要代入点的横坐标与纵坐标就可判断.
本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
3.【答案】C
【解析】解:从图中看到,甲,乙两种甜玉米平均产量相近,甲种甜玉米产量的波动比乙的波动大.
故选:C.
据从图中数据的波动情况分析.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,
即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即
波动越小,数据越稳定.
4.【答案】D
【解析】解:4、•••62+82K82,故不符合题意;
8、•••72+82。82,故不符合题意;
C,V62+72^82,故不符合题意;
。、•;6?+8?=1()2,故符合题意;
故选:D.
根据勾股定理判断即可.
本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
5.【答案】B
【解析】解:由函数图象可知,函数y的变化规律为),随x增大而减小.
故选:B.
根据函数图象判断即可.
本题考查了函数的图象,利用掌握数形结合的方法是解答本题的关键.
6.【答案】D
【解析】解:根据图象随着x的增大而减小,可知k<0,
・•・图象与y轴的交点大于0,
b>0,
综上可知,k<0,b>0.
故选:D.
根据一次函数的图象与性质之间的关系进行判断.
本题考查了一次函数的图象与性质之间的关系,掌握一次函数的图象与性质之间的关系是关键.
7.【答案】C
【解析】解:•.•四边形ABCO是平行四边形,
AB//CD,AB=CD,
Z.EAO=Z.FCO,Z.AEO=Z.CFO,
BE=DF,
AB-BE=CD-DF,
•■AE=CF,
^.^AEO^^CFO^P,
/.EAO=Z-FCO
AE=CF,
Z.AEO=4CFO
CFO(ASA),
•1•OA=OC,OE=OF,
・••①和②正确;
•••AC与E尸不一定相等,
.•.③不一定正确,
•••正确的距离个数为2,
故选:C.
根据ASA证明AAEO也△CFO即可判断①、②正确,不能判定③正确.
本题考查了平行四边形的性质,全等三角形的判定与性质,正确得出AAE。丝ACFO是解题的关键.
8.【答案】B
【解析】解:连接AC,
•••AABC=90°,AB=9m,BC=12m,
•••AC=VAB2+BC2=V92+122=15(m),
vCD=8m,AD=17m,
AC2+CD2=152+82=289,AD2=172=289,
•••AC2+CD2=AD2,
・•.△4CD是直角三角形,
/.ACD=90°,
二四边形A.BCD的面积=△ABC的面积+△4CC的面积
11
=-^AB-BC+^AC-CD
11
=2x9xl2+2xl5x8
=54+60
=114(m2)>
这块菜地的面积为114nl2,
故选:B.
连接AC,先在RtA4BC中,利用勾股定理求出AC的长,然后利用勾股定理的逆定理证明AAC。是直角三
角形,从而可得乙4CD=90。,最后根据四边形A8C。的面积=△ABC的面积+△力CD的面积,进行计算即
可解答.
本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关
键.
9.【答案】A
【解析】解:连接A4'交MN于点G,
A'MN由△4M翻折而成,AB=4.6cm,AC=4cm,BC=4.2cm,
MN是线段44'的垂直平分线,
vMN//BC,
MG是△4B4的中位线,
MN是△ABC的中位线,
:.AM=A'M==2.3cm,AN=A'N=^AC=2cm,MN=;BC=2.1cm,
AAAMN的周长=A'M+A'N+MN=2.3+2+2.1=6.4(cm).
故选:A.
连接44',根据轴对称的性质可知MN是线段44'的垂直平分线,再由MN〃BC可知MN是AZBC的中位线,
据此可得出结论.
本题考查的是翻折变换及平行线的性质,熟知图形翻折不变性的性质是解题的关键.
10.【答案】C
【解析】解:根据题意和图形的形状,可知水的最大深度〃与时间f之间的关系分为两段,先快后慢.
故选:C.
首先看图可知,蓄水池的下部分比上部分的体积小,故人与f的关系变化为先快后慢.
本题考查根据几何图形的性质,确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数
据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.
11.【答案】aZ-g
【解析】解:由题意得:2a+120,
解得:a>—
故答案为:a>—
根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.
本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.
12.【答案】60。
【解析】解:如图,
AB=2,BC
•••AC=VAB2+BC2=V4+12=4,
•••四边形ABC。是矩形,
・•,AO=CO=2=BO=DO,
・•・AB=AO=BO,
・•・△4B0是等边三角形,
・••Z.AOB=60°,
故答案为:60°.
由勾股定理可求AC的长,由矩形的性质可得4O=CO=2=BO=D。,可证△48。是等边三角形,可得
Z.AOB=60°,即可求解.
本题考查了矩形的性质,等边三角形的判定和性质,证明△AB。是等边三角形是解题的关键.
13.【答案】丙
【解析】解:甲的平均成绩为年黑等”=89.4,
90x3+85x5+90x2
乙的平均成绩为=87.5,
3+5+2
90x3+94x5+88x2
丙的平均成绩为91.6,
3+5+2
91.6>89.4>87.5,
・•・应聘者丙会被录取,
故答案为:丙.
根据加权平均数的定义求解即可.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
14.【答案】900
【解析】解:•・,AB?=仔+22=5,BC2=22+42=20,AC2=324-42=25,
222
.•MF+BC=ACf
・・.Z,ABC=90°,
故答案为:90°.
根据勾股定理及勾股定理逆定理求解即可.
此题考查了勾股定理逆定理、勾股定理,熟记勾股定理逆定理、勾股定理是解题的关键.
15.【答案】18
【解析】解:过点A作/PLFG,垂足为P,在AP上截取4H=MN=3米,连接HB交DE于点、N,过点N
作NMLFG,垂足为过点5作BCLAP,交4P的延长线于点C,交。上于点。,
A,
。:孑京:E
C•B
由题意得:AH=MN,AH//MN,
四边形AHNM是平行四边形,
•••AM=HN,
AM+BN=HN+BN=HB,
此时TIM+BN的值最小,且最小值即为HB的长,
在RtAHBC中,BC=12米,HC=AC-力"=5+3+4-3=9(米),
HB=VBC2+HC2=V122+92=15(米),
•••AM+BN的最小值为15米,
AAM+MN+NB的最小值=15+3=18米,
故答案为:18.
过点A作4P1FG,垂足为P,在AP上截取AH=MN=3米,连接HB交.DE于点、N,过点N作NMJ.FG,
垂足为M,过点3作BC1AP,交AP的延长线于点C,交DE于点。,根据题意可得:AH=MN,AH//MN,
从而可得四边形AHNM是平行四边形,进而可得AM=HN,然后根据两点之间,线段最短可得此时4M+BN
的值最小,且最小值即为4B的长,最后在RtAHBC中,利用勾股定理求出H8的长,从而进行计算即可解
答.
本题考查了勾股定理的应用,平行四边形的判定与性质,轴对称-最短路线问题,根据题目的已知条件并结
合图形添加适当的辅助线是解题的关键.
16.【答案】解:+二)2一(2,亏+/石)(2,弓一小石)
=2+2>f~6+3-(20-6)
=2+2>/~6+3-14
=-9+2V-6.
【解析】先根据完全平方公式,平方差公式和二次根式的性质进行计算,再关键二次根式的加减法法则进
行计算即可.
本题考查了二次根式的混合运算和乘法公式,能正确根据二次根式的运算法则进行计算是解此题的关键.
17.【答案】解:V-6«2.449,
21,—.—
•••J-^-^ym+yTTs
-
A/-62V63
33J2
<3V-6
=■■丁+丁
=£6
=~6~
2.449
x0.41.
【解析】结合已知条件,将原式计算后代入数值计算即可.
本题考查无理数的估算及二次根式的计算,特别注意最终结果需保留两位小数.
18.【答案】解:(1)•.•直线y=x+2与x轴,y轴分别交于A,B两点,
.1.将x=0代入,得y=2,
・•・8(0,2),
将y=0代入,得0=x+2,解得%=—2,
・•・A(_2,0),
AOA=2,
・・•点。的坐标是(0,-4),
・・・BC=2-(-4)=6,
s4ABe=;BC,O4=;X6X2=6;
(2)•••点C的坐标是(0,-4),OD=^OC,
•••D(2,0),
设直线C£>的解析式为y=kx+b,将C(0,-4),。(2,0)代入得,
{9二C,解得{”/
12k+o=0d=2
•••直线CD的解析式为y=2%-4,
・••直线8交直线AB于点E,
北:片乙解得kt
■.E(6,8).
【解析】(1)根据已知条件求点A和点B的坐标,结合点C的坐标,求出8c和OA的长度,即可求△ABC的
面积;
(2)已知点C的坐标,由OD=;OC,可求点。的坐标,用待定系数法求直线CO的解析式,与直线y=x+2
联立,解方程组即可求出点E的坐标.
本题考查了用待定系数法求一次函数关系式,直线与坐标轴围成的图形的面积,掌握待定系数法求解析式
及联立方程求交点坐标是解题的关键.
19.【答案】解:(1)如图:
直线/即为所求;
(2)设直线/交8力于。,则。为8。中点,如上图:
以。为圆心,OB为半径作。。交直线/于M,N,连接MB,MD,NB,BD,
四边形BMCW即为所求;
理由如下:
由作图可知,OB=0M=0D=0N,
二四边形BMDV是平行四边形,且MN=BD,
四边形BMQN是矩形,
•••直线/是8。的垂直平分线,
MB=MD,
,四边形BMQN是正方形.
【解析】(1)根据垂直平分线的尺规作图步骤作图即可;
(2)设直线/交8D于0,以。为圆心,08为半径作。0交直线/于M,N,四边形8MCN即为所求.
本题考查作图-复杂作图,解题的关键是掌握尺规作垂直平分线和正方形的判定定理.
20.【答案】解:完成表格如下:
11
X•・・124・・•
42
217721
y…3…
~422T
图象如图:
根据图象可得:当%>1时yi>y.
【解析】将x的值代入函数表达式,即可求解;然后描点画出函数图象,根据图象即可得到结论;
本题考查函数的图象与性质,观察函数图象并结合函数性质是解决本题的关键.
21.【答案】解:(1)此次竞赛成绩的中位数为第25个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025书画销售合同
- 2025医药大学合同审核处理笺
- 2025合同模板公司经营场所租赁合同范本
- 在职知识产权归属合同范本年
- 建设工程预拌砂浆采购合同
- 贸易采购及货物配送合同
- 卫生间装修合同书年
- 大件货物运输合同
- 2025外墙粉刷工程承包合同简易模板
- 房屋贷款合同范本
- 四川省自贡市2024-2025学年上学期八年级英语期末试题(含答案无听力音频及原文)
- 2025-2030年中国汽车防滑链行业竞争格局展望及投资策略分析报告新版
- 2025年上海用人单位劳动合同(4篇)
- 新疆乌鲁木齐地区2025年高三年级第一次质量监测生物学试卷(含答案)
- 卫生服务个人基本信息表
- 高中英语北师大版必修第一册全册单词表(按单元编排)
- 苗圃建设项目施工组织设计范本
- 广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 学校食品安全举报投诉处理制度
- 通用电子嘉宾礼薄
- 污水处理厂设备的操作规程(完整版)
评论
0/150
提交评论