仰角、俯角;坡度、坡角_第1页
仰角、俯角;坡度、坡角_第2页
仰角、俯角;坡度、坡角_第3页
仰角、俯角;坡度、坡角_第4页
仰角、俯角;坡度、坡角_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.4解直角三角形测量问题、坡度问题12021/10/10星期日

三边之间关系锐角之间关系边角之间关系(以锐角A为例)a2+b2=c2(勾股定理)∠A+∠B=90º直角三角形22021/10/10星期日1、了解仰角、俯角的概念;2、能根据直角三角形的知识解决与仰角、俯角、方位角有关的实际问题。学习目标1自学指导1请同学们认真看课本113--114页练习以上内容。思考:什么是仰角、俯角?32021/10/10星期日仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;水平线视线视线铅垂线仰角俯角从上往下看,视线与水平线的夹角叫做俯角.42021/10/10星期日1.如图,升国旗时某同学站在离旗杆24m处行注目礼,当国旗升到旗杆顶端时,这位同学的视线的仰角为30o,若双眼离地面1.5m,则旗杆高度为多少米?30oABCDE自学检测练52021/10/10星期日

·2、一位同学测河宽,如图,在河岸上一点A观测河对岸边的一小树C,测得AC与河岸边的夹角为450,沿河岸边向前走200米到达B点,又观测河对岸边的小树C,测得BC与河岸边的夹角为300,问这位同学能否计算出河宽?若不能,请说明理由;若能,请你计算出河宽.62021/10/10星期日解这位同学能计算出河宽.

在Rt△ACD中,设CD=x,由∠

CAD=450,则CD=AD=x.

在Rt△BCD中,AB=200,

则BD=200+X,由∠CBD=300,

则tan300=即解得所以河宽为20072021/10/10星期日1、了解坡度、坡角的概念;2、会运用解直角三角形的有关知识解决与坡度、坡角有关的实际问题。学习目标2自学指导2请同学们认真看课本115--116页练习以上内容。思考:什么是坡度、坡角?82021/10/10星期日探索新知αlhi=h:l1、坡角坡面与水平面的夹角叫做坡角,记作α

。2、坡度(或坡比)

坡度通常写成1∶m的形式,如i=1∶6.

如图所示,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i,即i=——hl3、坡度与坡角的关系坡度等于坡角的正切值坡面水平面92021/10/10星期日1、斜坡的坡度是,则坡角α=______度。2、斜坡的坡角是450

,则坡比是_______。3、斜坡长是12米,坡高6米,则坡比是_______。αLh巩固概念102021/10/10星期日例1.水库大坝的横断面是梯形,坝顶宽6m,坝高

23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度

i=1∶2.5,求:(1)坝底AD与斜坡AB的长度。(精确到0.1m

)(2)斜坡CD的坡角α。(精确到)例题讲解EFADBCi=1:2.5236α分析:(1)由坡度i会想到产生铅垂高度,即分别过点B、C作AD的垂线。

(2)垂线BE、CF将梯形分割成Rt△ABE,Rt△CFD和矩形BEFC,则AD=AE+EF+FD,EF=BC=6m,AE、DF可结合坡度,通过解Rt△ABE和Rt△CDF求出。

(3)斜坡AB的长度以及斜坡CD的坡角的问题实质上就是解Rt△ABE和Rt△CDF。112021/10/10星期日解:(1)分别过点B、C作BE⊥AD,CF⊥AD,垂足分别为点E、F,由题意可知在Rt△ABE中BE=CF=23mEF=BC=6m在Rt△DCF中,同理可得=69+6+57.5=132.5m在Rt△ABE中,由勾股定理可得(2)斜坡CD的坡度i=tanα=1:2.5=0.4

由计算器可算得EFADBCi=1:2.5236α

答:坝底宽AD为132.5米,斜坡AB的长约为72.7米.斜坡CD的坡角α约为22°。122021/10/10星期日

一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°,求路基下底的宽.(精确到0.1,米,,

变式练习45°30°4米12米ABCEFD132021/10/10星期日解:作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知

DE=CF=4(米),

CD=EF=12(米).

在Rt△ADE中,

在Rt△BCF中,同理可得

因此AB=AE+EF+BF

≈4+12+6.93≈22.93(米).答:路基下底的宽约为22.93米.45°30°4米12米ABCEFD142021/10/10星期日归纳总结

在涉及梯形问题时,常常首先把梯形分割成我们熟悉的三角形(直角三角形)、平行四边形(矩形),再借助这些熟悉的图形的性质与特征加以研究。152021/10/10星期日我军某部在一次野外训练中,有一辆坦克准备通过一座小山,且山脚和山顶的水平距离为1000m,山高为565m,如果这辆坦克能够爬300

的斜坡,试问:它能不能通过这座小山?AC1000m565mB162021/10/10星期日

一个公共房屋门前的台阶共高出地面1.2米.台阶被拆除后,换成供轮椅行走的斜坡.根据这个城市的规定,轮椅行走斜坡的倾斜角不得超过30°.从斜坡的起点至楼门的最短的水平距离该是多少?(精确到0.1米)1.21.230°ABC练习1172021/10/10星期日练习2

为了增加抗洪能力,现将横断面如图所示的大坝加高,加高部分的横断面为梯形DCGH,GH∥CD,点G、H分别在AD、BC的延长线上,当新大坝坝顶宽为4.8米时,大坝加高了几米?BACDi1=1:1.2i2=1:0.8GH6米EFMN182021/10/10星期日已知斜边求直边,已知直边求直边,已知两边求一边,已知两边求一角,已知锐角求锐角,已知直边求斜边,计算方法要选择,正弦余弦很方便;正切余切理当然;函数关系要选好;勾股定理最方便;互余关系要记好;用除还需正余弦;能用乘法不用除.优选关系式192021/10/10星期日动手做一做1、一架飞机以300角俯冲400米,则飞机的高度变化情况是()

A.升高400米

B.下降400米

C.下降200米

D.下降米

2、在山顶上D处有一铁塔,在塔顶B处测得地面上一点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已知塔高BD=30米,则山高CD=__________米.

ABCDαβ202021/10/10星期日ABC如图,在△ABC中,已知AC=6,∠C=75°,∠B=45°,求S△ABC。D212021/10/10星期日求证:ABCD的面积S=AB·BC·sinB(∠B为锐角)。ABCDE222021/10/10星期日23写在最后成功的基础在于好的学习习惯Thefoundationofsuccessliesingoodhabits2021/10/10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论