四川省武胜县2024年八年级数学第二学期期末检测模拟试题含解析_第1页
四川省武胜县2024年八年级数学第二学期期末检测模拟试题含解析_第2页
四川省武胜县2024年八年级数学第二学期期末检测模拟试题含解析_第3页
四川省武胜县2024年八年级数学第二学期期末检测模拟试题含解析_第4页
四川省武胜县2024年八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省武胜县2024年八年级数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知是一次函数的图像上三点,则的大小关系为()A. B. C. D.2.式子有意义,则a的取值范围是()A.且 B.或C.或 D.且3.如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A. B. C. D.4.下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是().A.1:2:3:4 B.1:2:2:3 C.2:2:3:3 D.2:3:2:35.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是()A. B. C. D.6.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.77.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.38.已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,周长是△ABC的一半.AB=8cm,则AB边上高等于()A.3cmB.6cmC.9cmD.12cm9.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.5010.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2) B.(2,) C.(,2) D.(+1,11.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形12.已知x=+1,y=-1,则的值为()A.20 B.16 C.2 D.4二、填空题(每题4分,共24分)13.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.14.若关于x的方程=-3有增根,则增根为x=_______.15.若是一个完全平方式,则_________.16.如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.17.如果一次函数的图像经过点和,那么函数值随着自变量的增大而__________.(填“增大”或“不变”或“减小”)18.已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.三、解答题(共78分)19.(8分)如图,在△ABC中,∠C=90∘,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)若AB=10,求BD的长度.20.(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.21.(8分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).(1)求每个月的销售利润;(用含有x代数式表示)(2)若每个月的利润为2250元,定价应为多少元?22.(10分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.23.(10分)(1)请计算一组数据的平均数;(2)一组数据的众数为,请计算这组数据的方差;(3)用适当的方法解方程.24.(10分)计算:+--25.(12分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?26.(1)计算:(2)计算:(2+)(2﹣)+÷+(3)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上且DF=BE,连接AF,BF.①求证:四边形BFDE是矩形;②若CF=6,BF=8,AF平分∠DAB,则DF=.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据k的值先确定函数的变化情况,再由x的大小关系判断y的大小关系.【详解】解:y随x的增大而减小又,即故答案为:A【点睛】本题考查了一次函数的性质,时,y随x的增大而增大,时,y随x的增大而减小,灵活运用这一性质是解题的关键.2、A【解析】

根据零指数幂的意义、分式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,a-1≠0,a+1≠0,解得,a≠1且a≠-1,故选:A.【点睛】本题考查的是分式有意义的条件、零指数幂,掌握分式有意义的条件是分母不等于零是解题的关键.3、D【解析】

由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,

∴一次函数图象一定经过第一、二象限,

∵k<0,

∴y随x的增大而减小,

∴一次函数不经过第三象限,

∴其图象不可能经过Q点,

故选:D.【点睛】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.4、D【解析】

由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.【详解】解:根据平行四边形的两组对角分别相等,可知D正确.

故选:D.【点睛】本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.5、D【解析】

先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.【详解】解:正比例函数y=kx的函数值y随x的增大而减小,∴k<0,一k>0,∴一次函数y=kx-k的图像经过一、二、四象限故选D.【点睛】本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.6、C【解析】试题解析:这个多边形的边数为:故选C.7、B【解析】

根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.8、B【解析】解:由题意得,∵△ABC∽△A′B′C′,△A′B′C′的周长是△ABC的一半∴位似比为2∴S△ABC=4S△A′B′C=24cm2,∴AB边上的高等于6cm.故选B.9、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.10、B【解析】

连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.【详解】连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,),∴OA=,∴OB=OA=1,AB=2OB=2,∴AD=AB=2,而AD平行x轴,∴D(2,).故选:B.【点睛】考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质11、D【解析】

分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.12、A【解析】

原式利用完全平方公式化简,将x与y的值代入计算即可求出值.【详解】当x=+1,y=-1时,x2+2xy+y2=(x+y)2=(+1+-1)2=(2)2=20,故选A.【点睛】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、AB=CD(答案不唯一)【解析】

由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【详解】解:添加条件为:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.故答案为AB=CD(答案不唯一).【点睛】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.14、2【解析】

增根是化为整式方程后产生的不适合分式方程的根,确定增根的可能值,让最简公分母x-2=0即可.【详解】∵关于x的方程=-3有增根,∴最简公分母x-2=0,∴x=2.故答案为:2【点睛】本题考查分式方程的增根,确定增根的可能值,只需让最简公分母为0即可.分母是多项式时,应先因式分解.15、【解析】

利用完全平方公式的结构特征确定出k的值即可【详解】解:∵是完全平方式,

∴k=±30,

故答案为.【点睛】本题考查了完全平方式,熟练掌握完全平方的特点是解决本题的关键.16、10cm【解析】

求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【详解】解:∵∠A=∠B,

∴BC=AC=5cm,

∵DF∥AC,

∴∠A=∠BDF,

∵∠A=∠B,

∴∠B=∠BDF,

∴DF=BF,

同理AE=DE,

∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,

故答案为10cm.【点睛】本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.17、增大【解析】

根据一次函数的单调性可直接得出答案.【详解】当时,;当时,,∵,∴函数值随着自变量的增大而增大,故答案为:增大.【点睛】本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.18、1【解析】

分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.【详解】解:当m=1时,原方程为2x+1=1,解得:x=﹣,∴m=1符合题意;当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,解得:m≤且m≠1.综上所述:m≤.故答案为:1.【点睛】本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)BD=.【解析】

(1)等腰直角三角形的底角为45°,角平分线上的点到两边的距离相等,根据这些知识用线段的等量代换可求解.

(2)先求出BC的长度,再设BD=x,可表示出CD,从而可列方程求解.【详解】(1)证明:∵AD平分∠CAB,C=90∘,DE⊥AB∴DC⊥AC,∴CD=DE∵AC=BC∴∠B=45°∴∠B=∠BDE∴DE=BE∴CD=BE;(2)解:在△ABC中,

∵∠C=90°,AC=BC,AB=10

∴BC=5

在Rt△BDE中,设BD=x,

∵DE=BE=CD∴BE=CD=x,

列方程为:x+x=5

解得BD=x=10−10.【点睛】本题考查角平分线的性质,等腰三角形的性质,勾股定理等知识点.以及数形结合的思想.20、1【解析】

设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.【详解】解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,

∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,

∴得出S1=x,S2=4y+x,S3=8y+x,

∴S1+S2+S3=3x+12y=18,故3x+12y=18,

x+4y=1,

所以S2=x+4y=1,即正方形EFGH的面积为1.

故答案为1【点睛】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.21、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.【解析】

(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;(2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.【详解】(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;(2)根据题意得:﹣2x2+300x﹣8800=2250,解得:x1=65,x2=85(不合题意,舍去).答:若每个月的利润为2250元,定价应为65元.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.22、BC边上的高AD=.【解析】

作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.【详解】作AD⊥BC于D,由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,解得,CD=1,则BC边上的高AD=.【点睛】考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23、(1)4;(2);(3)【解析】

(1)根据算数平均数公式求解即可;(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;(3)用因式分解法解一元二次方程.【详解】解:(1)∴这组数据的平均数为4;(2)由题意可知:x=2∴∴这组数据的方差为;(3)或∴【点睛】本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.24、2+3【解析】

根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.25、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254元.【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论