江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题含解析_第1页
江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题含解析_第2页
江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题含解析_第3页
江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题含解析_第4页
江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市教育会业水平监测2024年八年级数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若分式有意义,则的取值范围是A. B. C. D.2.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()

8

9

9

8

1

1

1.2

1.3

A.甲 B.乙 C.丙 D.丁3.在函数y=x+3中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣34.用配方法解关于的一元二次方程,配方后的方程可以是()A. B.C. D.5.函数自变量的值可以是()A.-1 B.0 C.1 D.26.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.7.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q8.如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F、N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有()A.1个 B.2个C.3个 D.4个9.早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小张去时所用的时间多于回家所用的时间 B.小张在公园锻炼了20分钟C.小张去时的速度大于回家的速度 D.小张去时走上坡路,回家时走下坡路10.在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是()甲:点D在第一象限乙:点D与点A关于原点对称丙:点D的坐标是(-2,1)丁:点D与原点距离是.A.甲乙 B.乙丙 C.甲丁 D.丙丁二、填空题(每小题3分,共24分)11.如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE=

________​12.如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.14.计算:(−)2=________;=_________.15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.16.一组数据:3,0,,3,,1.这组数据的众数是_____________.17.若二次根式有意义,则实数x的取值范围是__________.18.如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(6分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.21.(6分)计算:;。22.(8分)某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:七年级8579898389986889795999878589978689908977八年级7194879255949878869462999451889794988591分组整理,描述数据(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;得出结论,说明理由.(3)整体成绩较好的年级为___,理由为___(至少从两个不同的角度说明合理性).23.(8分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?24.(8分)(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC(探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.(应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)25.(10分)计算:(1)(2)已知a=+2,b=﹣2,求a2﹣b2的值.26.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)中,,将沿翻折至,连结.结论1:与重叠部分的图形是等腰三角形;结论2:.试证明以上结论.(应用与探究)在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)

参考答案一、选择题(每小题3分,共30分)1、A【解析】

直接利用分式有意义的条件即分母不为零,进而得出答案.【详解】解:分式有意义,,解得:.故选:.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.2、B【解析】

从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【详解】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,选择乙,故选B.3、B【解析】

根据二次根式有意义的条件列出不等式即可.【详解】解:根据题意得:x+3≥0解得:x≥-3所以B选项是正确的.【点睛】本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、A【解析】

在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.【详解】解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,配方得(x−1)2=1.故选:A.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、C【解析】

根据分母不能等于零,可得答案.【详解】解:由题意,得,解得,故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能等于零得出不等式是解题关键.6、D【解析】

根据正比例函数的图象经过第一,三象限可得:,因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.【详解】根据正比例函数的图象经过第一,三象限可得:所以,所以一次函数中,,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.7、C【解析】

试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.【详解】解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,∴点P不一定在圆上.故选C.【点睛】考点:点与圆的位置关系;线段垂直平分线的性质.8、B【解析】

连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).【详解】连接DE.∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,∴点A.B.C.D.E都在以AC为直径的圆上,∵AB=CD,∴弧AB=弧CD,∴∠AEB=∠CED,∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,∴BE⊥ED,故(1)正确;∵点A.B.C.D.E都在以AC为直径的圆上,∴∠AEF=∠CED,∠EAF=∠ECD,又∵△ACE为等腰直角三角形,∴AE=CE,在△AEF和∉CED中,∠AEF=∠CEDAE=CD∠EAF=∠ECD∴△AEF≌△CED,∴AF=CD,而CD=AB,∴AB=AF,即(2)正确;∴∠ABF=∠AFB=45°,∴∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,∵CM平分∠ACB交BN于M,∴∠EMC=∠ECM,∴EC=EM,∴EM=EA,即(3)正确;∵AB=AF,∠BAD=90°,EM=EA,∴∠ABF=∠CBF=45°,∠EAM=∠AME,∵△AEC是等腰直角三角形,∴∠EAC=45°,∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,∴∠BAM=∠NAM,∴(4)正确;故选D.【点睛】此题考查等腰三角形的判定与性质,圆周角定理,等腰直角三角形,解题关键在于作辅助线9、C【解析】

根据图象可以得到小张去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据C的速度可以判断去时是否走上坡路,回家时是否走下坡路.【详解】解:A、小张去时所用的时间为6分钟,回家所用的时间为10分钟,故选项错误;B、小张在公园锻炼了20-6=14分钟,故选项错误;C、小张去时的速度为1÷=10千米每小时,回家的速度的为1÷=6千米每小时,故选项正确;D、据(1)小张去时走下坡路,回家时走上坡路,故选项错误.故选C.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.10、D【解析】

根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.【详解】∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,∴B,D也关于原点对称,∵B(2,-1)∴D(-2,1)故点D在第四象限,点D与原点距离是故丙丁正确,选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.二、填空题(每小题3分,共24分)11、40°【解析】

根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.【详解】∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,∴△ABC≌△DEF.∵∠A=50°,∴∠EDF=∠A=50°,∵△DEF是直角三角形,∴∠EDF+∠DFE=90°.∵∠EDF=50°,∴∠DFE=90°-50°=40°.故答案为40°.【点睛】本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.12、或.【解析】

根据题意求出每个菱形的边长以及面积,从中找出规律.【详解】解:当菱形的边长为a,其中一个内角为120°时,

其菱形面积为:a2,当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为:=×()4,……,由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,故答案为:或.【点睛】本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.13、1.【解析】

根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【详解】∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==1,故答案为:1.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识.矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.14、5π-1【解析】

根据二次根式的性质计算即可.【详解】解:.故答案为:5,π-1.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.15、2.1.【解析】

连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP.∵∠ACB=90°,AC=3,BC=1,∴AB=,∵PE⊥AC,PF⊥BC,∠ACB=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×1×3=×5•CP,解得CP=2.1.∴EF的最小值为2.1.故答案为2.1.16、2【解析】

根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.故答案为:2.【点睛】本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.17、【解析】

根据二次根式有意义的条件可得x-4≥0,再解即可.【详解】由题意得:x−4⩾0,解得:x⩾4,故答案为:x⩾4【点睛】此题考查二次根式有意义的条件,解题关键在于二次根式有意义的条件得到x-4≥018、1【解析】

根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.【详解】解:∵BC⊥x轴,

∴S△BOC=|k|=1,

∵点A,B关于原点中心对称,

∴OA=OB,

∴S△AOC=S△BOC=1,

∴S△ABC=S△AOC+S△BOC=1,

故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(共66分)19、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】解:(1)∵直线与轴分别交于C、B两点,∴B(0,6),C(-8,0),∵CD=DB,∴D(-4,3).(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.∵C(-8,0),B′(-4,6),∴直线CB′的解析式为,∴P(-2,9),作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.由题意点P向左平移4个单位,向下平移3个单位得到T,∴T(-6,6),∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.∴PD′+D′C′+C′E的最小值为1.(3)如图2中,延长交BK′于J,设BK′交OC于R.∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,所以,所以OR=3,tan∠OBR=,∵∠S′JK′=∠OBR=∠RBC,∴tan∠S′JK′==,∴,∵,∴,所以为的中点,,∴,由旋转的性质可知:,.①当时,设,,解得,所以.②当时,同理则有,整理得:,解得,所以,又因为,,所以直线为,此时在直线上,此时三角形不存在,故舍去.综上所述,满足条件的点N的坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.20、见解析【解析】

(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.【点睛】此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,21、(1);(2).【解析】

先把二次根式化为最简二次根式,然后合并即可;先把二次根式化为最简二次根式,然后把可能内合并后进行二次根式的除法运算.【详解】解:原式;原式.【点睛】本题考查二次根式的混合运算,解题关键在于灵活运用二次根式的性质.22、(1)见解析;(2)91.5,94,55%;(3)八年级,八年级的中位数和优秀率都高于七年级.【解析】

(1)由收集的数据即可得;根据题意不全频数分布直方图即可;(2)根据众数和中位数和优秀率的定义求解可得;(3)八年级的中位数和优秀率都高于七年级即可的结论.【详解】(1)补全八年级20名学生安全教育频数分布直方图如图所示,(2)八年级20名学生安全教育考试成绩按从小到大的顺序排列为:5155627178858687889192949494949497989899∴中位数==91.5分;∵94分出现的次数最多,故众数为94分;优秀率为:×100%=55%,故答案为:91.5,94,55%;(3)整体成绩较好的年级为八年级,理由为八年级的中位数和优秀率都高于七年级。故答案为:八年级,八年级的中位数和优秀率都高于七年级.【点睛】此题考查条形统计图,中位数,众数,解题关键在于看懂图中数据.23、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.【解析】

(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.240÷40=600,8天的人数,600×10%=60,故答案为10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,∴中位数是6天.(3)∵2000×(25%+10%+5%)=2000×40%=1.∴估计“活动时间不少于7天”的学生人数大约有1人.24、(1)见解析;(2)AC=BD.【解析】

探究:连结AC,由四个中点可得EF∥AC且EF=12AC、GH∥AC且GH=12AC,据此可得EF∥GH,且应用:添加AC=BD,连接BD,由EF=12AC、EH=12BD,且AC=BD知EF=EH,根据四边形【详解】探究:平行四边形,证明:连结AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12AC∵G、H分别是CD、AD的中点,∴GH∥AC,且GH=12AC∴EF∥GH,且EF=GH.∴四边形EFGH是平行四边形.​应用:AC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论