版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西科技学院附属中学2024年八年级数学第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,函数()和()的图象相交于点A,则不等式>的解集为()A.> B.< C.> D.<2.下列计算结果正确的是()A. B.C. D.3.下列计算正确的是()A. B.2 C.()2=2 D.=34.某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()植树量(棵)34567人数410861A.参加本次植树活动共有29人 B.每人植树量的众数是4C.每人植树量的中位数是5 D.每人植树量的平均数是55.若代数式有意义,则x应满足()A.x=0 B.x≠1 C.x≥﹣5 D.x≥﹣5且x≠16.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. B. C. D.7.若正多边形的一个外角是,则该正多边形的内角和为()A. B. C. D.8.关于一次函数,下列结论正确的是()A.随的增大而减小 B.图象经过点(2,1) C.当﹥时,﹥0 D.图象不经过第四象限9.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(
)A.(﹣1,0) B.(﹣1,﹣1) C.(﹣2,0) D.(﹣2,﹣1)10.在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.1511.鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差12.下列长度的三条线段能组成直角三角形的是()A.,, B.,, C.,, D.,,二、填空题(每题4分,共24分)13.已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝214.在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.15.如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________16.如图,当时,有最大值;当时,随的增大而______.(填“增大”或“减小”)17.如图,在菱形中,,点是边的中点,是对角线上的一个动点,若,则的最小值是_____.18.如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.三、解答题(共78分)19.(8分)解不等式组:,并把解集在数轴上表示出来.20.(8分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.21.(8分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.22.(10分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.23.(10分)如图,函数的图象经过,,其中,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连结AD,DC,CB,AC与BD相交于点E.(1)若的面积为4,求点B的坐标;(2)四边形ABCD能否成为平行四边形,若能,求点B的坐标,若不能说明理由;(3)当时,求证:四边形ABCD是等腰梯形.24.(10分)如图,四边形是菱形,对角线,相交于点,且.(1)菱形的周长为;(2)若,求的长.25.(12分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。26.如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:由图象可以看出当时,的图象在图象的上方,所以的解集为.故本题应选A.2、C【解析】
A、原式不能合并,错误;B.原式合并得到结果,即可做出判断;C、原式利用二次根式乘法法则计算得到结果,即可做出判断;D、原式分母有理化得到结果,即可做出判断【详解】解:A、原式不能合并,错误;B、,错误;C、,正确;D、,错误,故选:C.【点睛】此题考查了二次根式的加减法,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.3、C【解析】
利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A、>3>,∴选项A不正确;B、,∴选项B不正确;C、()2=2,∴选项C正确;D、=3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4、D【解析】分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.故选D.点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.5、D【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】要使代数式有意义,必须有x+5≥0且x-1≠0,即x≥-5且x≠1,故选D.6、C【解析】
根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.
故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.7、C【解析】
根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.【详解】由题意,正多边形的边数为,其内角和为.故选C.【点睛】考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.8、C【解析】分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>时,y>0,可判断C选项正误.详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;当x=2时,y=2×2-1=3≠1,故选项B错误;当3x-1>0,即x>时,y>0,,所以C选项正确;故选C.点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.9、B【解析】
已知点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,根据向左平移横坐标减,向下平移纵坐标减的平移规律可得,点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以B的坐标为(﹣1,﹣1).故答案选C.考点:坐标与图形变化﹣平移.10、C【解析】
首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,∠B=∠D∠BAC=∠DAC∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【点睛】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.11、A【解析】
众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多;如果我是鞋店老板,我会对众数感兴趣,因为这种尺码的鞋子需求量最大,销售量最多,据此即可找到答案.【详解】解:根据题干分析可得:众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多,因为这种尺码的鞋子需求量最大,销售量最多.故选A.【点睛】此题主要考查了中位数、众数、平均数、方差的意义;也考查了学生分析判断和预测的能力.12、B【解析】
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角;【详解】A.2+3≠4,故该三角形不是直角三角形;B.3+4=5,故该三角形是直角三角形;C.4+5≠6,故该三角形不是直角三角形;D.5+6≠7,故该三角形不是直角三角形.故选B【点睛】此题考查勾股定理逆定理,解题关键在于理解勾股定理逆定理的内容.二、填空题(每题4分,共24分)13、14【解析】
根据菱形的面积等于两对角线乘积的一半求得其面积即可.【详解】由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷1=14cm1.故答案为:14.【点睛】此题主要考查菱形的面积等于两条对角线的积的一半.14、6或【解析】
(1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;(2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.【详解】解:(1)四边形是矩形,,,由折叠的性质可知,,如图1所示:,,,,是的中点,,,(2)①当点在矩形内时,连接,如图2所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,,;②当点在矩形外时,连接,如图3所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,即:,,解得:,(不合题意舍去),综上所述,或,故答案为(1)6;(2)或.【点睛】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.15、【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.【点睛】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.16、增大【解析】
根据函数图像可知,当时,随的增大而增大,即可得到答案.【详解】解:根据题意,∵当时,有最大值;∴函数图像开口向下,∴当时,随的增大而增大;故答案为:增大.【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质进行解题.17、【解析】
找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.【详解】连接DE交AC于P,连接DB,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠ABC=120°,∴∠BAD=60°,∵AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△ADE中,DE==.∴PB+PE的最小值为.故答案为.【点睛】本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.18、【解析】
由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.【详解】解:∵O1和O2分别是这两个正方形的中心,∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,∴∠O1BO2=∠O1BC+∠O2BC=90°,∴阴影部分的面积=×4×3=12.故答案是:12.【点睛】本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.三、解答题(共78分)19、-3<x≤1【解析】
分别解不等式,在数轴上表示出解集,找出解集的公共部分即可.【详解】,解不等式①得:,解不等式②得:∴原不等式组的解集为-3<x≤1解集在数轴上表示为:【点睛】考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20、19【解析】
根据平行四边形的性质可知对角线相互平分,,推出即可推出周长.【详解】∵四边形ABCD是平行四边形,∴,OC=AC=,OD=,∴的周长.【点睛】本题主要考查了平行四边的性质,熟知平行四边形的对角线相互平分是解题关键.21、(1)详见解析;(2)【解析】
(1)证明△ABE≌△DCE,可得结论;(2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCE是等边三角形,∴BE=CE,∠EBC=∠ECB=60°,即∠ABE=∠DCE=150°,∴△ABE≌△DCE,∴AE=DE;(2)解:过点E作EG⊥CD于G,∵DC=CE,∠DCE=150°,∴∠CDE=∠CED=15°,∴∠ECG=30°,∵CB=CD=AB=2,∴EG=1,CG=,在Rt△DGE中,DE=,在Rt△DEF中,∠EDA=∠DAE=90°﹣15°=75°∴∠DEF=30°,∴DF=DE=(cm).【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质,题目的综合性很好,难度不大.22、12千米【解析】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据题意得:解得:x=12,经检验,x=12是原方程的解,且符合题意.答:小型清雪车每小时清扫路面的长度为12千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1);(2)能,;(3)详见解析.【解析】
(1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,将B的坐标代入反比例解析式中,求出mn的值,三角形ABD的面积由BD为底边,AE为高,利用三角形面积公式来求,由B的坐标得到BD=m,由AC-EC表示出AE,由已知的面积,利用面积公式列出关系式,将mn的值代入,求出m的值,进而确定出n的值,即可得到B的坐标;(2)假设四边形ABCD为平行四边形,利用平行四边形的性质得到BD与AC互相平分,得到E为AC的中点,E为BD的中点,由A的坐标求出E的坐标,进而确定出B的坐标,将B坐标代入反比例解析式检验,B在反比例图象上,故假设正确,四边形ABCD能为平行四边形;(3)由由AC=BD,得到A的纵坐标与B的横坐标相等,确定出B的横坐标,将B横坐标代入反比例解析式中求出B的纵坐标,得到B的坐标,进而确定出E的坐标,得到DE=CE=1,由AC=BD,利用等式的性质得到AE=BE,进而得到两对对应边成比例,且由对顶角相等得到夹角相等,利用两边对应成比例且夹角相等的两三角形相似,得到三角形DEC与三角形AEB相似,由相似三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行得到CD与AB平行,而在直角三角形ADE与直角三角形BEC中,DE=EC,AE=BE,利用勾股定理得到AD=BC,且AD与BC不平行,可得出四边形ABCD为等腰梯形.【详解】解:(1);(2)若ABCD是平行四边形,则AC,BD互相平分,∵,∴,将代入反比例中,;∴B在上,则四边形ABCD能成为平行四边形;(3)∵,,;∴∵轴,轴,∴∴∵∴∴∴∴∴根据勾股定理,.∵AD与BC不平行∴则四边形ABCD是等腰梯形.【点睛】本题考查反比例函数综合题,熟练掌握计算法则是解题关键.24、(1)1;(2)AC=【解析】
(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出AO的长,进而解答即可.【详解】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:1;故答案为1.(2)∵四边形ABCD是菱形,BD=2,AB=2,∴AC⊥BD,BO=1,∴AO=,∴AC=2AO=.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生物质能epc工程总承包合同规范3篇
- 二零二五年度文化旅游并购与全域旅游重组合同3篇
- 二零二五年度智慧城市定向技术服务合同范本3篇
- 2025年度网络建设施工合同服务内容扩展3篇
- 二零二五年度智能交通信号系统安装服务协议
- 海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷
- 邯郸科技职业学院《创意设计实践》2023-2024学年第一学期期末试卷
- 洪水调解课程设计
- 二零二五年度房屋拆除项目居民意见征询及协调协议3篇
- 运输课课程设计书模板
- 高低压配电柜-福建宁德核电站投标书
- 少儿绘画之《水仙花开迎春来》
- 《法学概论》课程教学大纲
- 成品油税收分类编码
- 福建省厦门市高一上学期期末考试政治试题 Word版含答案
- 山东中医药大学中西医临床(专升本)学士学位考试复习题
- 铁路货场平面设计说明书
- 抽象函数的单调性
- 2019年血站绩效考核标准
- 义务教育语文课程常用字表3500字
- 盘扣架支架计算小程序EXCEL
评论
0/150
提交评论