新余市重点中学2024年八年级数学第二学期期末调研模拟试题含解析_第1页
新余市重点中学2024年八年级数学第二学期期末调研模拟试题含解析_第2页
新余市重点中学2024年八年级数学第二学期期末调研模拟试题含解析_第3页
新余市重点中学2024年八年级数学第二学期期末调研模拟试题含解析_第4页
新余市重点中学2024年八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新余市重点中学2024年八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A. B. C. D.2.已知点在第二象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.矩形的面积为,一边长为,则另一边长为()A. B. C. D.4.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,在中,对角线,交于点.若,,,则的周长为()A. B. C. D.6.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x(x+)7.在平面直角坐标系中,已知点在第四象限,且点到轴的距离是4,到轴的距离是3,那么点的坐标为()A. B. C. D.8.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. B.1,C.6,7,8 D.2,3,49.甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x千米,则所列方程正确的是()A. B. C. D.10.一次函数的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知,点P在轴上,则当轴平分时,点P的坐标为______.12.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.13.若把代数式化为的形式,其中、为常数,则______.14.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.15.已知等腰三角形两条边的长为4和9,则它的周长______.16.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是__________。17.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.18.的整数部分是a,小数部分是b,则________.三、解答题(共66分)19.(10分)已知2y+1与3x-3成正比例,且x=10时,y=4(1)求y与x之间的函数关系式,并指出它是什么函数;(2)点P在这个函数图象上吗?20.(6分)如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.21.(6分)已知,,是的三边,且满足,试判断的形状,并说明理由.22.(8分)设每个小正方形网格的边长为1,请在网格内画出,使它的顶点都在格点上,且三边长分别为2,,.(1)求的面积;(2)求出最长边上的高.23.(8分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?24.(8分)化简求值:,从-1,0,1,2中选一个你认为合适的m值代入求值.25.(10分)甲乙两车分别从A.B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶。(1)A、B两地的距离___千米;乙车速度是___;a=___.(2)乙出发多长时间后两车相距330千米?26.(10分)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.请回答:

(1)①图1中△ABC的面积为________;②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误;故选C.【点睛】此题考查轴对称图形,解题关键在于识别图形2、D【解析】

依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.【详解】∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3、C【解析】

根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.【点睛】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.4、C【解析】

先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.【详解】时,,随的增大而减小,函数图象从左往右下降,,,,即函数图象与轴交于正半轴,这个函数的图象不经过第三象限.故选:.【点睛】本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.5、B【解析】

根据平行四边形的性质进行计算即可.【详解】解:在中,BO=BD=,CO=AC=2,∴的周长为:B0+CO+BC=+2+3=7.5故答案选:B【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.6、A【解析】

根据因式分解的概念逐项判断即可.【详解】A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;D、在等式的右边不是整式,故D不正确;故选A.7、D【解析】

根据各象限内点的坐标特征解答即可.【详解】解:因为点在第四象限,且点到轴的距离是4,到轴的距离是3,所以点的坐标为,故选:.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.8、B【解析】试题解析:A.()2+()2≠()2,故该选项错误;B.12+()2=()2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.9、D【解析】

根据题意,等量关系为乙走的时间-=甲走的时间,根据等量关系式列写方程.【详解】20min=h根据等量关系式,方程为:故选:D【点睛】本题考查列写分式方程,注意题干中的单位不统一,需要先换算单位.10、A【解析】

根据k>0必过一三象限,b>0必过一、二、三象限,即可解题.【详解】∵y=x+3中k=1>0,b=1>0,∴函数图象必过一、二、三象限,故选A.【点睛】本题考查了一次函数的图象和性质,属于简单题,熟悉系数与函数图象的位置关系是解题关键.二、填空题(每小题3分,共24分)11、【解析】

作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.【详解】如图,作点A关于y轴对称的对称点∵,点A关于y轴对称的对称点∴设直线的解析式为将点和点代入直线解析式中解得∴直线的解析式为将代入中解得∴故答案为:.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.12、【解析】

由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=故答案为75°.【点睛】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.13、-7【解析】

利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.【详解】x−4x−5=x−4x+4−4−5=(x−2)−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.14、【解析】

根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b.

把(0,1)代入直线解析式得1=b,

解得

b=1.

所以平移后直线的解析式为y=3x+1.

故答案为:y=3x+1.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.15、1【解析】

分9是腰长与底边长两种情况讨论求解即可.【详解】①当9是腰长时,三边分别为9、9、4时,能组成三角形,周长=9+9+4=1,②当9是底边时,三边分别为9、4、4,∵4+4<9,∴不能组成三角形,综上所述,等腰三角形的周长为1.故答案为:1.【点睛】本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.16、12【解析】

结合勾股定理和正方形的面积公式,得字母B所代表的正方形的面积等于其它两个正方形的面积差,又因为正方形的面积=a2开方即可求边长.【详解】字母B所代表的正方形的面积=169−25=144所以字母B所代表的正方形边长a=.故选12.【点睛】本题考查了勾股定理及学生知识迁移的能力.17、x<【解析】

根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.【详解】依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.解得.故直线l1:y1=x+1.同理,直线l2:y2=x-1.由k1x+b1>k2x+b2得到:x+1>x-1.解得x<.故答案是:x<.【点睛】此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.18、2【解析】

因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.【详解】因为1<<2,所以a=1,b=−1.故(1+)(-1)=2,故答案为:2.【点睛】此题考查估算无理数的大小,解题关键在于得到的整数部分a.三、解答题(共66分)19、(1),y是x的一次函数;(2)点不在这个函数的图象上.【解析】

可设,把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型;把P点坐标代入函数解析式进行判断即可.【详解】解:设,时,,,,,即,故y是x的一次函数;,当时,,点P不在这个函数的图象上.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.20、(1)证明见解析;(2)对补点如:N(,).证明见解析【解析】试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2)在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.试题解析:(1)∵四边形ABCD是正方形,∴AC⊥BD.∴∠DMC=∠AMB=90°.即∠DMC+∠AMB=180°.∴点M是正方形ABCD的对补点.(2)对补点如:N(,).说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可.证明(方法一):连接AC,BD由(1)得此时对角线的交点为(2,2).设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD的对补点.证明(方法二):连接AC,BD,由(1)得此时对角线的交点为(2,2).设点N是线段AC上的一点(端点A,C及对角线交点除外),连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD除对角线交点外的对补点.设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).21、△ABC是等腰三角形;理由见解析【解析】

首先将已知等式进行因式分解,然后由三角形三边都大于0,解其方程得到,即可判定.【详解】∵,,是的三边,都大于0∴∴△ABC是等腰三角形.【点睛】此题主要考查因式分解的应用,利用三角形三边都大于0,解其方程即可解题.22、(1);作图如图;(1).【解析】

(1)因为每个小正方形网格的边长为1,利用勾股定理,首先作出最长边,同理即可作出,;(1)根据三角形面积不变,设出最长边上的高,根据三角形面积公式,即可求解.【详解】解(1)作图如图:,,,由图可知:,即.故的面积为1.(1)设最长边上的高为,而最长边为,∴,解得.故最长边上的高为.【点睛】本题目考查二次根式与勾股定理的综合,难度不大,熟练掌握勾股定理的逆用是顺利解题的关键.23、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.【解析】

(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.【详解】解:(1)由题意知:男生鞋号数据的平均数==24.11;男生鞋号数据的众数为21;男生鞋号数据的中位数==24.1.∴平均数是24.11,中位数是24.1,众数是21.(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,∴厂家最关心的是众数.【点睛】本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.24、,【解析】

根据分式的混合运算法则运算即可,注意m的值只能取1.【详解】解:原式===把m=1代入得,原式=.【点睛】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.25、(1)560千米;100;;(2)乙出发0.5小时或3.5小时后两车相距330千米.【解析】

(1)根据图象,甲出发时的S值即为A、B两地间的距离;先求出甲车的速度,然后设乙车的速度为xkm/h,再利用相遇问题列出方程求解即可;然后求出相遇后甲车到达B地的时间,再根据路程=速度×时间求出两车的相距距离a即可;(2)设直线BC的解析式为S=kt+b(k≠0),利用待定系数法求出直线BC的解析式,再令S=330,求出t的值,减去1即为相遇前乙车出发的时间;设直线CD的解析式为S=kt+b(k≠0),利用待定系数法求出直线CD的解析式,再令S=330,求出t的值,减去1即为相遇后乙车出发的时间.【详解】(1)t=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论