2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题含解析_第1页
2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题含解析_第2页
2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题含解析_第3页
2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题含解析_第4页
2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省无锡市宜兴市丁蜀区数学八年级下册期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点A在反比例函数y=kxx<0的图象上,过点A作x轴、y轴的垂线,垂足分别为点B、C,若AB=1.5,AC=4,则kA.-3 B.-4.5 C.6 D.-62.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个3.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=24.如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(﹣2,1) B.(﹣1,2) C.(,﹣1) D.(﹣,1)5.下列调查适合普查的是()A.调查2011年3月份市场上西湖龙井茶的质量B.了解萧山电视台188热线的收视率情况C.网上调查萧山人民的生活幸福指数D.了解全班同学身体健康状况6.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直7.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a²8.如图,在□ABCD中,AB⊥AC,若AB=4,AC=6,则BD的长是()A.11 B.10 C.9 D.89.下列说法中正确的是()A.若,则 B.是实数,且,则C.有意义时, D.0.1的平方根是10.如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为()A.6 B.8 C.10 D.1211.一次函数的图象如图所示,则不等式的解集是()A. B. C. D.12.如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.8二、填空题(每题4分,共24分)13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=514.甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.15.若二次函数y=ax2+bx的图象开口向下,则a可以为_________(写出一个即可).16.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____17.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.18.如图,一次函数y=ax+b的图象经过A(0,1)和B(2,0)两点,则关于x的不等式ax+b<1的解集是_____.三、解答题(共78分)19.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.20.(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.21.(8分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.22.(10分)计算(1);(2).23.(10分)先化简,再求值:[其中,]24.(10分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED(1)判断△BEC的形状,并加以证明;(2)若∠ABE=45°,AB=2时,求BC的长.25.(12分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).(1)写出A,B,C三个顶点的坐标;(2)写出BC的中点P的坐标.26.(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

由AB=1.5,AC=4可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.【详解】设A点的坐标为(x,y)由AB=1.5,AC=4可得矩形ABOC的面积=1.5×4=6∴xy又∵函数图像在第二象限故答案选择D.【点睛】本题考查的是反比例函数的几何意义,在反比例函数y=kx图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值2、D【解析】

首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.3、D【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.4、D【解析】

首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,

则∠ODC=∠AEO=90°,

∴∠OCD+∠COD=90°,

∵四边形OABC是正方形,

∴OC=OA,∠AOC=90°,

∴∠COD+∠AOE=90°,

∴∠OCD=∠AOE,

在△AOE和△OCD中,,

∴△AOE≌△OCD(AAS),

∴CD=OE=1,OD=AE=,

∴点C的坐标为:(-,1).

故选:D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解题的关键.5、D【解析】解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;D工作量小,没有破坏性,适合普查.故选D.6、B【解析】

根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.7、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8、B【解析】

利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=2.在Rt△ABO中,利用勾股定理可得:BO=3∴BD=2BO=1.故选:B.【点睛】本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.9、C【解析】

根据算术平方根的意义,可知=|a|>0,故A不正确;根据一个数的平方为非负数,可知a≥0,故不正确;根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确;根据一个数的平方等于a,那么这个数就是a的平方根,故不正确.故选C10、B【解析】

设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.【详解】设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),∵E在反比例函数上∴(a+b)(a-b)=8,即a2-b2=8∴S正方形AOBC-S正方形CDEF=a2-b2=8故选B.【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.11、A【解析】

根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<-2故选:A.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.12、C【解析】

由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=1,则可求得AD的长,可求得答案.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.∵AE=3,∴AD=BC=3+1=2.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.二、填空题(每题4分,共24分)13、1.【解析】试题解析:6※3=6+36-3考点:算术平方根.14、甲【解析】

根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、a=−2(答案不唯一)【解析】

由图象开口向下,可得a<2.【详解】解:∵图象开口向下,∴a<2,∴a=−2,(答案不唯一).故答案为:−2.【点睛】本题考查了二次函数的性质,注意二次函数图象开口方向与系数a的关系.16、2【解析】

根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【详解】∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,解得:m≤1,∴m的取值范围为m≤1.∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+2②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=2,∴8=m+2,m=2;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为2.故答案是:2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.17、1.【解析】

首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.【详解】2x﹣a≤﹣1,x≤,∵解集是x≤1,∴=1,解得:a=1,故答案为1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.18、x>1【解析】

观察函数图象,写出在y轴右侧的自变量的取值范围即可.【详解】当x>1时,ax+b<1,即不等式ax+b<1的解集为x>1.故答案为:x>1【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).20、(1)y=﹣2x+2(2)①y=4x+3②24③S=2m-1.【解析】

(1)利用待定系数法可求函数的解析式;(2)①根据题意直接代入函数的解析式求出n,得到D点的坐标,然后由A、D点的坐标,由待定系数法求出AD的解析式;②构造三角形直接求面积;③由点M在直线y=-2x+2得到M的坐标,构造三角形,然后分类求解即可.【详解】解:(1)∵直线y=﹣2x+a与y轴交于点C(0,2),∴a=2,∴该直线解析式为y=﹣2x+2.(2)①∵点D(﹣1,n)在直线BC上,∴n=﹣2×(﹣1)+2=8,∴点D(﹣1,8).设直线AD的解析式为y=kx+b,将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,得:,解得:,∴直线AD的解析式为y=4x+3.②令y=﹣2x+2中y=0,则﹣2x+2=0,解得:x=3,∴点B(3,0).∵A(﹣3,0)、D(﹣1,8),∴AB=2.S△ABD=AB•yD=×2×8=24③∵点M在直线y=-2x+2上,∴M(m,-2m+2),当m<3时,S=即;当m>3时,即S=2m-1.21、(1)见解析;(2)见解析.【解析】

(1)利用平行线的性质及中点的定义,可利用AAS证得结论;

(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;【详解】证明:(1)∵AF∥BC∴∠AFE=∠DBE∵E是AD中点,∴AE=DE在△AEF和DEB中∴△AEF≌△DEB(AAS)(2)在Rt△ABC中,D是BC的中点,所以,AD=BD=CD又AF∥DB,且AF=DB,所以,AF∥DC,且AF=DC,所以,四边形ADCF是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.22、(1);(2).【解析】

(1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;(2)先根据二次根式的性质进行化简,进行运算,即可得到答案.【详解】(1)===2(2)==【点睛】本题考查二次根式的混合运算,解题的关键是先化简再进行计算.23、【解析】分析:先化简,再把代入化简后的式子进行运算即可.详解:,当x=时,原式=点睛:本题考查了分式的化简求值.24、(1)详见解析;(2)【解析】

(1)根据矩形的性质和角平分线的性质可得∠BEC=∠BCE,可得BE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论