版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省安庆市第十四中学八年级下册数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x的方程=3的解为正数,则m的取值范围是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣2.某班名学生的身高情况如下表:身高人数则这名学生身高的众数和中位数分别是()A. B. C. D.3.一次函数的图象可能是()A. B. C. D.4.如图,在▱ABCD中,,,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为A.1 B. C. D.5.如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.6.已知m2-n2=mn,则的值等于()A.1 B.0 C.-1 D.-7.如图,平行四边形的周长为40,的周长比的周长多10,则为()A.5 B.20 C.10 D.158.将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A.,1 B.-,1 C.-,-1 D.,-19.直线:为常数的图象如图,化简:A.3 B. C. D.510.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.菱形的对角线相等二、填空题(每小题3分,共24分)11.在矩形中,与相交于点,,那么的度数为,__________.12.已知方程的一个根为,则常数__________.13.直角三角形两边长为5和12,则此直角三角形斜边上的中线的长是_______.14.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.15.如图,菱形ABCD的周长为20,对角线BD的长为6,则对角线AC的长为______.16.如图,若直线与交于点,则根据图象可得,二元一次方程组的解是_________.17.化简的结果为_____.18.已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.三、解答题(共66分)19.(10分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.20.(6分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.(1)试说明△CEF是等腰三角形.(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.21.(6分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:(1)求出h与d之间的函数关系式;(2)某人身高为196cm,一般情况下他的指距应是多少?22.(8分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).(1)求直线l1:的函数表达式;(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.23.(8分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,同时点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.()(1)如果ts秒时,PQ//AC,请计算t的值.(2)如果ts秒时,△PBQ的面积等于S㎝2,用含t的代数式表示S.(3)PQ能否平分△ABC的周长?如果能,请计算出t值,不能,说明理由.24.(8分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.25.(10分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.(1)若,求的长.(2)求证:.26.(10分)某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,专业知识工作经验仪表形象A141812B181611根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知关于x的方程=3的解为正数,所以﹣2m+9>0,解得m<,当x=3时,x==3,解得:m=,所以m的取值范围是:m<且m≠.故答案选B.2、D【解析】
根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【详解】解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.故选:D.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.3、A【解析】
根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A正确.故选:A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.4、B【解析】
由已知可得,EF是三角形DMN的中位线,所以,当DM⊥AB时,DM最短,此时EF最小.【详解】连接DM,因为,E、F分别为DN、MN的中点,所以,EF是三角形DMN的中位线,所以,EF=,当DM⊥AB时,DM最短,此时EF最小.因为,,所以,DM=AM,所以,由勾股定理可得AM=2,此时EF==.故选B【点睛】本题考核知识点:三角形中位线,平行四边形,勾股定理.解题关键点:巧用垂线段最短性质.5、A【解析】
根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6、C【解析】
根据分式的运算法则即可求出答案.【详解】解:∵m2-n2=mn,且mn≠0,∴,即,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7、A【解析】
由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.【详解】在平行四边形ABCD中,AO=OC,AB=CD,AD=BC,∵△AOB的周长比△BOC的周长少10cm,∴BC+OB+OC-(AB+OB+OA)=10cm,∴BC-AB=10cm,∵平行四边形ABCD的周长是40cm,∴AB+BC+CD+AD=40cm,∴BC+AB=20cm,∴AB=5cm.故选A.【点睛】本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.8、D【解析】分析:由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.详解:∵在直线中,当时,,∴直线过点(0,1),又∵直线是由直线向右平移4个单位长度得到的,∴,且直线过点(4,1),∴,解得:,∴.故选D.点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.9、C【解析】
先从一次函数的图象判断出的正负,然后再化简原代数式.【详解】由直线为常数的图象可得:,所以,故选:C.【点睛】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.10、C【解析】分析:根据平行四边形、矩形、菱形的性质分别判断得出即可.详解:A.根据平行四边形的性质,平行四边形的对角线互相平分不相等,故此选项错误;B.根据矩形的性质,矩形的对角线相等,不互相垂直,故此选项错误;C.根据菱形的性质,菱形的对角线互相垂直且平分,故此选项正确;D.根据菱形的性质,菱形的对角线互相垂直且平分但不相等,故此选项错误.故选C.点睛:本题主要考查平行四边形、矩形、菱形的性质,熟练掌握相关定理是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据矩形的性质可得∠OAD=∠ODA,再根据三角形的外角性质可得∠AOB=∠DAO+∠ADO=46°,从而可求∠OAD度数.【详解】∵四边形是矩形∴OA=OC=OB=OD,∴∠DAO=∠ADO,∵∠AOB=∠DAO+∠ADO=46°,∴=∠AOB=×46°=23°即=23°.故答案为:23°.【点睛】此题考查矩形的性质,解决矩形中角度问题一般会运用矩形对角线分成的四个小三角形的等腰三角形的性质.12、【解析】
将x=2代入方程,即可求出k的值.【详解】解:将x=2代入方程得:,解得k=.【点睛】本题考查了一元二次方程的解,理解方程的解是方程成立的未知数的值是解答本题的关键13、6或6.5【解析】分类讨论,(1)若斜边为12,则直角三角形斜边上的中线的长是6;(2)若12是直角边,则斜边为13,则直角三角形斜边上的中线的长是6.5;综上述,直角三角形斜边上的中线的长是6或6.5.14、841【解析】
认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【详解】解:由已知等式可知,,∴故答案为:84、1.【点睛】本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.15、8【解析】
利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.【详解】如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO∵BD=6,∴BO=3,∵周长为20,∴AB=5,由勾股定理得:AO=AB2∴AC=8,故答案为:8【点睛】本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.16、【解析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线L1与L2的交点P的坐标.【详解】解:根据题意知,
二元一次方程组的解就是直线l1与l2的交点P的坐标,
又∵P(2,1),
∴原方程组的解是:
故答案是:【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.17、x【解析】
先把两分数化为同分母的分数,再把分母不变,分子相加减即可.【详解】,故答案为x.18、3.5【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.三、解答题(共66分)19、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20、(1)见解析(2)见解析【解析】
(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.【详解】解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠B=30°,∴AC=AB.【点睛】此题主要考查了等腰三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.21、(1)h=9d−20;(2)24cm.【解析】
(1)根据题意设h与d之间的函数关系式为:h=kd+b,利用待定系数法从表格中取两组数据,利用待定系数法,求得函数关系式;
(2)把h=196代入函数解析式即可求得.【详解】(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,.解得k=9,b=−20,即h=9d−20;(2)当h=196时,196=9d−20,解得d=24cm.【点睛】本题考查了一次函数的应用,根据题意找到对应数据是解题的关键.22、(1);(2)【解析】
(1)利用求出点B的坐标,再将点A、B的坐标代入求出答案;(2)求出直线与直线的交点坐标即可得到答案.【详解】(1)解:∵直线l2:过点B(m,1),∴∴m=2,∴B(2,1),∵直线l1:过点A(3,0)和点B(2,1)∴,解得:,∴直线l1的函数表达式为(2)解方程组,得,当过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,即点P在图象交点的左侧,∴【点睛】此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P通过作垂线即可判断出点P的位置.23、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.【解析】
(1)由题意得,PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;(2)由题意得,PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;(3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.【详解】解:(1)由题意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴当t=时,PQ∥AC;(2)由题意得,PB=6-t,BQ=2t,∵∠B=90°,∴BP×BQ=×2t×(6-t)=,即ts秒时,S=();(3)PQ不能平分△ABC的周长.理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度专利实施许可合同:一项新型医疗设备的商业化生产2篇
- 2024版二手房买卖与装修装饰合同2篇
- 2024年版水电设施维护合同3篇
- 网络平台建设合同(2024年)3篇
- 2024年4S店维修服务协议3篇
- 基于二零二四年度的卫星通信服务合同
- 2024版:人力资源管理岗位劳动合同2篇
- 2024年城市导视系统设计合同2篇
- 二零二四年度三轮车4S店经营权转让合同2篇
- 二零二四年货物销售合同范本2篇
- DB3711-T 147-2023 玉米生产全产业链管理技术规范
- 数据中心运维方案
- 学生心理健康的亲子关系
- 高空作业安全培训记录
- GB 43473-2023照明产品用控制装置及其部件安全要求
- 设备部年度工作总结计划
- 使帐物相符并有效控制库存培训课件
- 《防火安全知识》课件
- 基于人体测量的手部作业疲劳评估研究
- 小学信息技术3年级(上)陕西人民教育出版社
- 学习机项目融资计划书
评论
0/150
提交评论