浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题含解析_第1页
浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题含解析_第2页
浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题含解析_第3页
浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题含解析_第4页
浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市宁波华茂国际学校2024届八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)

5

6

7

8

人数(人)

3

15

22

10

表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个2.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.4 B.5 C.6 D.73.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个4.设方程x2+x﹣2=0的两个根为α,β,那么(α﹣2)(β﹣2)的值等于()A.﹣4 B.0 C.4 D.25.下列成语所描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.拔苗助长6.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形 B.矩形 C.菱形 D.梯形7.下列二次根式中,是最简二次根式的是()A. B. C. D.8.下列四组线段中,不能作为直角三角形三条边的是()A.8,15,17 B.1,2, C.7,23,25 D.1.5,2,2.59.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC; B.∠B=∠C;∠A=∠D,C.AB=CD,CB=AD; D.AB=AD,CD=BC10.下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.4,5,6 C.9,12,15 D.11.观察下列等式:,,,,,…,那么的个位数字是()A.0 B.1 C.4 D.512.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是()A.1 B.-1 C.5 D.-5二、填空题(每题4分,共24分)13.如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.14.计算:_______.15.在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是▲.(只要填写一种情况)16.不等式组恰有两个整数解,则实数的取值范围是______.17.如图,正方形面积为,延长至点,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为___________.18.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___三、解答题(共78分)19.(8分)先化简,再求值:其中,20.(8分)如图,在△ABC中,AB=AC,BC=10,D为AB上一点,CD=8,BD=1.(1)求证:∠CDB=90°;(2)求AC的长.21.(8分)已知关于x的分式方程=1的解为负数,求k的取值范围.22.(10分)如图,△ABC的面积为63,D是BC上的一点,且BD:BC=2:3,DE∥AC交AB于点E,延长DE到F,使FE:ED=2:1.连结CF交AB点于G.(1)求△BDE的面积;(2)求的值;(3)求△ACG的面积.23.(10分)计算:(1)﹣;(2)24.(10分)“五一”期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.现有甲、乙两家租车公司,租车费用如下:甲公司按日收取固定租金80元,另外再按租车时间计费;乙公司无固定租金,直接按租车时间计费,每小时租费是30元.(1)设租用时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,其图象如图所示,分别求出y1,y2关于x的函数解析式;(2)请你帮助小丽计算,租用哪家新能源汽车自驾出游更合算?25.(12分)如图,四边形ABCD是平行四边形,EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.26.如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点睛】本题考查众数.2、B【解析】

根据题意列方程组得到k=n-4,由于0<k<2,于是得到0<n-4<2,即可得到结论.【详解】依题意得:,∴k=n-4,∵0<k<2,∴0<n-4<2,∴4<n<6,故选B.【点睛】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.3、B【解析】

根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4、C【解析】试题分析:根据方程的系数利用根与系数的关系找出α+β=﹣1,α•β=﹣2,将(α﹣2)(β﹣2)展开后代入数据即可得出结论.∵方程+x﹣2=0的两个根为α,β,∴α+β=﹣1,α•β=﹣2,∴(α﹣2)(β﹣2)=α•β﹣2(α+β)+1=﹣2﹣2×(﹣1)+1=1.故选C.考点:根与系数的关系.5、A【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是必然事件,故C不符合题意;D、是不可能事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【解析】

解:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).7、A【解析】

直接利用最简二次根式的定义分析得出答案.【详解】A.是最简二次根式,故此选项正确;B.,故此选项错误;C.,故此选项错误;D.,故此选项错误.故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.8、C【解析】

根据勾股定理的逆定理逐一判断即可.【详解】A.因为82+152=172,故以8,15,17为三边长能构成直角三角形,故本选项不符合题意;B.12+22=()2,故以1,2,为三边长能构成直角三角形,故本选项不符合题意;C.72+232≠252,故以7,23,25为三边长不能构成直角三角形,故本选项符合题意;D.,故以为三边长能构成直角三角形,故本选项不符合题意.故选C.【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.9、C【解析】

根据平行四边形的判定方法逐项判断即可.【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;故选C.【点睛】本题考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.10、C【解析】

根据勾股定理的逆定理,看较小两条边的平方和是否等于最长边的平方即可判断.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、92+122=152,能构成直角三角形,故符合题意;D、,不能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11、A【解析】

由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.【详解】以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,2019÷10=201…9,(1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1)=45×201+20=9045+45=9090,∴的个位数字是0故选A.【点睛】此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律.12、A【解析】

关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.【详解】∵点P(-2,b)和点Q(a,-3)关于x轴对称∴a=-2,b=3∴故选A.【点睛】本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.二、填空题(每题4分,共24分)13、x≥2【解析】

根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.【详解】解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.【点睛】本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.14、2【解析】

先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.【详解】原式,故答案为:2.【点睛】本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.15、AD=BC(答案不唯一).【解析】根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.故此时是中心对称图形.故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).16、【解析】

首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【详解】解:对于,解不等式①得:,解不等式②得:,因为原不等式组有解,所以其解集为,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a应满足,解得.故答案为.【点睛】本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.17、【解析】

如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=,进一步可得,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴DQ=EQ=TK=NK=,FQ=FE+EQ=,∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴QR=NK=,∴FR=FQ+QR=,NR=KQ=DK−DQ=,∴,再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN为正方形,∴正方形FHMN的面积=,故答案为:.【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.18、y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题(共78分)19、【解析】

原式括号中两项通分并利用同分母分式的减法法则计算,然后利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【详解】解:原式====,把代入,得:原式=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1)见解析;(2)AC=.【解析】

(1)根据勾股定理的逆定理即可得到答案;(2)设AC=x,由题意得到x2=(x﹣1)2+82,计算即可得到答案.【详解】解:(1)∵BC=10,CD=8,BD=1,∴BD2+CD2=BC2,∴△BDC是直角三角形,∴∠CDB=90°;(2)∵AB=AC,∴设AC=x,则AD=x﹣1,∴x2=(x﹣1)2+82,解得:x=,故AB=AC=.【点睛】本题考查勾股定理及其逆定理,解题的关键是掌握勾股定理.21、k>且k≠1【解析】

首先根据解分式方程的步骤,求出关于x的分式方程=1的解,然后根据分式方程的解为负数,求出k的取值范围即可.【详解】解:去分母,得(x+k)(x-1)-k(x+1)=x2-1,去括号,得x2-x+kx-k-kx-k=x2-1,移项、合并同类项,得x=1-2k,根据题意,得1-2k<0且1-2k≠1,1-2k≠-1解得k>且k≠1,∴k的取值范围是k>且k≠1.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.22、(1)△BDE的面积是28;(2);(3)9【解析】

(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;(2)若要求的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S=14,进而求出四边形ACDE的面积是35和S=21,利用相似三角【详解】(1)∵DE∥AC,∴△BDE∽△BCA,∴,∵BD:BC=2:3,∴,∵△ABC的面积为63,∴△BDE的面积是28;(2)∵DE∥AC,∴,∴AC=ED,∵FE:ED=2:1,∴EF=2ED,∴;(3)∵△BDE的面积是28,∴S=14,∴四边形ACDE的面积是35,∴S=21,∵DE∥AC,∴△GEF∽△GAC,∴,∴S=×21=9.【点睛】此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA23、(1)﹣;(2)13﹣4.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=3﹣﹣2=﹣;(2)原式=5﹣4+4+(13﹣9)=9﹣4+4=13﹣4.【点睛】本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.24、(1)y1=15x+80(x≥0),y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】

(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【详解】(1)由题意设y1=k1x+80,把点(1,95)代入得95=k1+80解得k1=15,∴y1=15x+80(x≥0),设y2=k2x,把(1,30)代入,可得30=k2即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x解得x<;当y1<y2时,15x+80>30x解得x>;答:当租车时间为小时,选择甲乙公司一样;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点睛】本题为函数实际应用问题,综合考察了待定系数法、一元一次方程和不等式和通过临界点比较函数值大小.25、118°【解析】

根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论