2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题含解析_第1页
2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题含解析_第2页
2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题含解析_第3页
2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题含解析_第4页
2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北省武汉市汉阳区八年级数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组长度的线段中,可以组成直角三角形的是()A.1,2,3 B.1,,3 C.5,6,7 D.5,12,132.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A. B. C. D.3.若一次函数的图象经过第二、三、四象限,则a的取值范围是()A.a≠3 B.a>0 C.a<3 D.0<a<34.当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-5.、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)6.在反比例函数y图象上有三个点,若x1<0<x2<x3,则下列结论正确的是()A. B. C. D.7.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体 B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本 D.样本容量是5008.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.20B.56C.192D.以上答案都不对9.已知,则的值等于()A.6 B.-6 C. D.10.如图是一个平行四边形,要在上面画两条相交的直线,把这个平行四边形分成的四部分面积相等,不同的画法有()A.1种 B.2种 C.4种 D.无数种11.下列根式是最简二次根式的是()A.2 B.23 C.9 D.12.如果点在正比例函数的图像上,那么下列等式一定成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.14.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.15.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)16.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.17.直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________18.若m2﹣n2=6,且m﹣n=2,则m+n=_________三、解答题(共78分)19.(8分)计算:(1)(2)(4)÷220.(8分)如图①,点是正方形内一点,,连结,延长交直线于点.(1)求证:;(2)求证:是等腰三角形;(3)若是正方形外一点,其余条件不变,请你画出图形并猜想(1)和(2)中的结论是否仍然成立.(直接写出结论即可).21.(8分)如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作交ED的延长线于点F,连接CF.(1)若,,求BF的长;(2)求证:.22.(10分)已知关于x的方程(m为常数)(1)求证:不论m为何值,该方程总有实数根;(2)若该方程有一个根是,求m的值。23.(10分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?24.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?25.(12分)已知一次函数,.(1)若方程的解是正数,求的取值范围;(2)若以、为坐标的点在已知的两个一次函数图象上,求的值;(3)若,求的值.26.如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;

D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.

故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、D【解析】

整个组的平均成绩=1名学生的总成绩÷1.【详解】这1个人的总成绩10x+5×90=10x+450,除以1可求得平均值为.故选D.【点睛】此题考查了加权平均数的知识,解题的关键是求的1名学生的总成绩.3、D【解析】

由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于a的一元一次不等式组,解之即可得出结论.【详解】解:∵一次函数的图象经过第二、三、四象限,

∴,

解得:0<a<1.

故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.4、B【解析】

根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.5、C【解析】

根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.6、B【解析】

根据反比例函数的性质及反比例函数图象上点的坐标特征解得即可.【详解】∵k=-2019<0,∴反比例函数y的图象在二、四象限,在每个象限内,y随x的增大而增大,∵点在反比例函数y图象上,x1<0<x2<x3,∴y1>0,y2<0,y3<0,∴y2<y3<y1,故选B.【点睛】本题考查了反比例函数y=的性质,k>0时,图象在一、三象限,在各象限内,y随x的增大而减小;k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.7、D【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A.2019年泰兴市八年级学生的视力情况是总体,故A错误;B.每一名八年级学生的视力情况是个体,故B错误;C.从中随机调查了500名学生的视力情况是一个样本,故C错误;D.样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.8、C【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.详解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=2,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选:C.点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.9、A【解析】由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A10、D【解析】

利用平行四边形为中心对称图形进行判断.【详解】解:∵平行四边形为中心对称图形,∴经过平行四边形的对称中心的任意一条直线可把这个平行四边形分成的四部分面积相等.故选:D.【点睛】本题考查的是中心对称,掌握平行四边形是中心对称图形以及中心对称图形的性质是解题的关键.11、A【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12、D【解析】

由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数图象上的一点,∴,∴.故选D.【点睛】此题考查正比例函数,解题关键在于将点A的坐标代入函数表达式.二、填空题(每题4分,共24分)13、.【解析】

由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【点睛】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.14、1.1.【解析】

设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【详解】解:要保持利润率不低于10%,设可打x折.

则500×-400≥400×10%,

解得x≥1.1.

故答案是:1.1.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.15、;(2)详见解析;(3)1【解析】

(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.

(2)由相似三角形的面积比等于相似比的平方求解.

(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;

若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;

(2)S△AEH+S△CFG=S四边形ABCD

证明:在△ABD中,

∵EH=BD,

∴△AEH∽△ABD.

∴=()2=

即S△AEH=S△ABD

同理可证:S△CFG=S△CBD

∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,

同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,

故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.16、1【解析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.17、;【解析】

根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.【详解】根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得,即故答案为【点睛】本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.18、3【解析】

利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.【详解】∵,∴m+n=3.三、解答题(共78分)19、(1)4+5(2)2+2【解析】

(1)先进行乘法运算,然后把化简后合并即可.(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】(1)原式=(2)【点睛】此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键20、(1)详见解析;(2)详见解析;(3)图详见解析,(1)和(2)中的结论仍然成立.【解析】

(1)由等腰三角形的性质可证∠CDE=∠DCE,进而得到,然后根据“SAS”可证;(2)由全等三角形的性质可知AE=BE,从而,根据余角的性质可证∠EAF=∠AFE,可证是等腰三角形;(3)分点E在CD的右侧和点E在AB的左侧两种情况说明即可.【详解】(1)证明:∵四边形是正方形,∴AD=BC,.,,即;;(2)证明:,,,;,是等腰三角形.(3)(1)和(2)中的结论仍然成立.由可知点E只能在CD的右侧或AB的左侧.如图,当点E在CD的右侧时,∵四边形是正方形,∴AD=BC,.,,即;;,∵AD//BC,∴∠AFE=∠CBE,;,是等腰三角形.如图,当点E在AB的左侧时,同理可证(1)和(2)中的结论仍然成立.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,余角的性质,平行线的性质,以及等腰三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.21、(1);(2)见解析.【解析】

(1)由直角三角形的性质可求CD=4=BC,再由直角三角形的性质可求BF的长;(2)过点C作CG⊥CF,交DE于点G,通过证明△FBC≌△GDC,可得FC=CG,BF=DG,即可得结论.【详解】解:(1)正方形ABCD中:,,∵∵∴∴∴∴∴∴(2)证明:过点C作交DE于G∴∴又∵∴在四边形BCDF中∵∴∵∴∴,∴在中.∴【点睛】本题考查了正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.22、(1)见解析;(2)【解析】

(1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m-1)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;

(2)将代入原方程,即可求出m的值.【详解】(1)解:当时,原方程化为,解得,此时该方程有实数根;当时,此时该方程有实数根;综上所述,不论m为何值,该方程总有实数根.(2)解法1:把代入原方程,得,解得,经检验是方程的解,的值为.解法2:,该方程是一元二次方程.设该方程的另一个根为.,解得.把代入原方程,得,解得.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:

①当△>0时,方程有两个不相等的实数根;

②当△=0时,方程有两个相等的实数根;

③当△<0时,方程无实数根.

也考查了方程的解的定义.23、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.【解析】

(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;【详解】解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)收购的5﹣6年期黄连600千克,6年以上期黄连400千克;(2)收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.【解析】

(1)根据题意列方程或方程组进行解答即可,(2)先求出利润与销售量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论