版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市高密市2024年八年级下册数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.2.如图,、分别是平行四边形的边、上的点,且,分别交、于点、.下列结论:①四边形是平行四边形;②;③;④,其中正确的个数是()A.1个 B.2个C.3个 D.4个3.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为()A.4cm B.6cm C.8cm D.10cm4.某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.12xx+1=6 B.15.如果(2a-1)2=1-2a,则A.a<12B.a≤126.下列方程中,是关于x的一元二次方程的是().A. B. C. D.7.如图,在矩形中,,,分别在边上,.将,分别沿着翻折后得到、.若分别平分,则的长为(
)A.3 B.4 C.5 D.78.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18° B.72° C.36° D.144°9.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.10.从2004年5月起某次列车平均提速20千米/小时,用相同的时间,列车提速前行驶200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?设提速前这次列车的平均速度为千米/小时,则下列列式中正确的是()A. B. C. D.11.若x<y,则下列式子不成立的是()A.x-1<y-1 B. C.x+3<y+3 D.-2x<-2y12.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差二、填空题(每题4分,共24分)13.当分式有意义时,x的取值范围是__________.14.分解因式:a2-4=________.15.若关于x的方程有增根,则k的值为_____.16.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.17.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.18.如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.三、解答题(共78分)19.(8分)化简与计算:(1);(2)﹣x﹣1;(3).20.(8分)把下列各式因式分解:(1)a3﹣4a2+4a(2)a2(x﹣y)+b2(y﹣x)21.(8分)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.22.(10分)在⊿ABC中,AB=17cm,BC=16cm,,BC边上的中线AD=15cm,问⊿ABC是什么形状的三角形?并说明你的理由.23.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?24.(10分)25.(12分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.26.计算:2+6-5+
参考答案一、选择题(每题4分,共48分)1、B【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.【点睛】本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.2、D【解析】
根据平行四边形的性质即可判断.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,又,∴四边形是平行四边形①正确;∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,∴,②正确;∴EG=FH,故BE-EG=DF-FH,故,③正确;∵,∴,故④正确故选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质与全等三角形的判定与性质.3、D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD
的周长为20cm,∴AB+AD=10cm∴△ABE的周长=10cm.故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!4、B【解析】
每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,12x(x−1)=3×2,
即12x(x−1)=6,
故选:【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.5、B【解析】试题分析:根据二次根式的性质1可知:(2a-1)2=|2a-1|=1-2a,即2a-1≤0故答案为B.考点:二次根式的性质.6、D【解析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】A、是关于x的一元一次方程,不符合题意;B、为二元二次方程,不符合题意;C、是分式方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为1,是一元二次方程,符合题意;故选D.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为1.7、B【解析】
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.根据题意得到∠GAM=∠BAE=∠EAG=30°,根据三角函数的计算得到CT,即可解决问题.【详解】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.由题意:∠BAD=90°,∠BAE=∠EAG=∠GAM,∴∠GAM=∠BAE=∠EAG=30°,∵AB=AG=2,∴AM=AG•cos30°=3,同法可得CT=3,易知四边形ABNM,四边形GHTN是矩形,∴BN=AM=3,GH=TN=BC﹣BN﹣CT=10﹣6=4,故选:B.【点睛】本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8、C【解析】
解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,又∵∠B=4∠A,∴5∠A=180°,解得∠A=36°,∴∠C=36°.故选C.9、B【解析】
根据平移的定义直接判断即可.【详解】解:由其中一个图形平移得到整个图形的是B,
故选:B.【点睛】此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.10、B【解析】
设提速前列车的平均速度为x千米/小时,则提速之后的速度为(x+20)千米/小时,根据题意可得,相同的时间提速之后比提速之前多走50千米,据此列方程.【详解】设提速前列车的平均速度为x千米/小时,由题意得:.故选B.【点睛】考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.11、D【解析】
根据不等式的性质逐项分析即可.【详解】A.∵x<y,∴x-1<y-1,故成立;B.∵x<y,∴,故成立;C.∵x<y,∴x+3<y+3,故成立;D.∵x<y,∴-2x>-2y,故不成立;故选D.故选:D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.12、B【解析】
由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.二、填空题(每题4分,共24分)13、【解析】
分式有意义的条件为,即可求得x的范围.【详解】根据题意得:,解得:.答案为:【点睛】本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.14、(a+2)(a-2);【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).考点:因式分解-运用公式法.15、1【解析】
方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.【详解】解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,∵方程有增根,∴x=1或x=﹣1,当x=1时,2k=6,k=1;当x=﹣1时,﹣4=6,显然不成立;∴k=1,故答案为1.【点睛】本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.16、4.1.【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x1+41=(10﹣x)1,解得:x=4.1,答:折断处离地面的高度OA是4.1尺.故答案为:4.1.【点睛】本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.17、【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为【点睛】本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.18、【解析】
试题分析:设直线AB的解析式为y=kx+b,把A(0,1)、点B(1,0)代入,得,解得.∴直线AB的解析式为y=﹣1x+1.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,∵y轴⊥BC∴OB=OC,∴BC=1,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,即y=-1x-1.三、解答题(共78分)19、(1)﹣x﹣1;(2);(3)6﹣18.【解析】
(1)先把除法运算化为乘法运算,然后把x2+x分解后约分即可;(2)先进行通分,然后进行同分母的分式的减法运算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【详解】(1)原式=﹣•x(x+1)=﹣x﹣1;(2)原式===;(3)原式=(﹣2﹣)•2=(﹣3)•2=6﹣18.【点睛】本题考查了分式的混合运算,二次根式的混合运算,熟练掌握相关运算的运算法则是解题的关键.20、(1)a(a﹣2)2;(2)(x﹣y)(a+b)(a﹣b).【解析】
(1)原式提取公因式后,利用完全平方公式分解即可;
(2)原式提取公因式后,利用平方差公式分解即可.【详解】(1)a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2;(2)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、存在;k只能取3,4,5【解析】
解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.【详解】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.【点睛】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.22、等腰直角三角形,理由见解析.【解析】试题分析:先根据AD是BD上的中线求出BD的长,再根据勾股定理的逆定理判断出△ABD的形状,进而可得出∠ADC=90°,根据勾股定理即可求出AC的长,进而得出结论.试题解析:△ABC是等腰三角形,∵AD是BC边的中线,BC=16cm,∴BD=DC=8cm,∵AD²+BD²=15²+8²=17²=AB²,∴∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,AC==17cm.∴AC=AB,即△ABC是等腰三角形.点睛:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.23、(1)A型设备最多购买5台;(2)A型设备至少要购买4台.【解析】
(1)设购买A型号的x台,购买B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024异地恋爱合同范本
- 焊工灭火知识培训课件
- 2024雕塑制作合同协议书范本
- 专业化交通违法车辆拖行服务2024协议范本版B版
- 《畜禽病理学》课件
- 2024年跨区域生态环境保护补偿协议
- 浙江农业商贸职业学院《机械结构创新设计》2023-2024学年第一学期期末试卷
- 中南林业科技大学涉外学院《外景采集与创作》2023-2024学年第一学期期末试卷
- 2024年绿色建筑墙面装饰工程劳务分包合同2篇
- 2024幼儿园施工环保技术咨询服务合同3篇
- 驾驶员劳务派遣投标方案
- 续签劳动合同意见征询书
- 水封式排水器的研究
- 导线三角高程计算表(表内自带计算公式)
- 小学数学课堂教学评价表
- 钢管装卸安全管理规定
- 2023-2024学年浙江省余姚市小学语文三年级期末自测试卷附参考答案和详细解析
- 学校安全事故报告和调查处理制度(四篇)
- 石油化工管道布置设计规范
- 卫健系统深入开展矛盾纠纷“大走访、大排查、大化解”专项行动工作方案
- 阿尔茨海默病(AD)的影像学诊断
评论
0/150
提交评论