![浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M01/35/3D/wKhkFmYZetiAIIo9AAHf8Cr9w0Y405.jpg)
![浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M01/35/3D/wKhkFmYZetiAIIo9AAHf8Cr9w0Y4052.jpg)
![浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M01/35/3D/wKhkFmYZetiAIIo9AAHf8Cr9w0Y4053.jpg)
![浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M01/35/3D/wKhkFmYZetiAIIo9AAHf8Cr9w0Y4054.jpg)
![浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M01/35/3D/wKhkFmYZetiAIIo9AAHf8Cr9w0Y4055.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市滨江区部分学校2024年八年级下册数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,正方形ABCD的边长为8,点M在边DC上,且,点N是边AC上一动点,则线段的最小值为A.8B.C.D.102.学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生()A.100名 B.200名 C.250名 D.400名3.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论正确的有是()(1);(2);(3);(4).A.1个 B.2个 C.3个 D.4个4.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC5.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是()A.10 B.20 C.30 D.406.下列二次根式是最简二次根式的是(
)A. B. C. D.7.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20 B.10 C.10 D.288.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a9.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断10.如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形,则阴影部分面积是()A.12 B.10 C.8 D.6二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.12.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.13.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.14.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________17.若m2﹣n2=6,且m﹣n=2,则m+n=_________18.不等式4﹣3x>2x﹣6的非负整数解是_____.三、解答题(共66分)19.(10分)已知关于x的方程x2-(m+1)x+2(m-1)=0,(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.20.(6分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.(1)观察图3,根据图形,写出一个代数恒等式:______;(2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式和计算:①;②.21.(6分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.22.(8分)在Rt△ABC中,∠B=900,AC=100cm,∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。(2)当t为何值时,△DEF为直角三角形?请说明理由。23.(8分)如图,在平面直角坐标系中,直线分别交两坐标轴于A、B两点,直线y=-2x+2分别交两坐标轴于C、D两点(1)求A、B、C、D四点的坐标(2)如图1,点E为直线CD上一动点,OF⊥OE交直线AB于点F,求证:OE=OF(3)如图2,直线y=kx+k交x轴于点G,分别交直线AB、CD于N、M两点.若GM=GN,求k的值24.(8分)如图,为锐角三角形,是边上的高,正方形的一边在上,顶点、分别在、上.已知,.(1)求证:;(2)求这个正方形的面积.25.(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出关于原点的中心对称图形;(2)画出将绕点顺时针方向旋转90°得到的.(3)设为边上一点,在上与点对应的点是.则点坐标为__________.26.(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.(1)求直线y=kx+b(k≠0)的表达式;(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.【详解】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM=,即DN+MN的最小值是10;故选:D.【点睛】本题考查了轴对称问题以及正方形的性质,难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.2、B【解析】
根据频数=总数×频率,直接代值计算即可.【详解】解:根据题意,得
该组共有男生为:800×0.25=200(人).
故选:B.【点睛】此题考查频率、频数的关系:频率=。能够灵活运用公式是解题的关键.3、C【解析】
利用平行线的性质,折叠的性质依次判断.【详解】∵A∥B,∴∠EF=,故(1)正确;由翻折得到∠GEF=,∴∠GE=64°,∴∠AEC=180°-∠GE=116°,故(2)错误;∵A∥B,∴∠BGE=∠GE=64°,故(3)正确;∵EC∥FD∴∠BFD=∠BGC=180°-∠BGE=116°,故(4)正确,正确的有3个,故选:C.【点睛】此题考查平行线的性质,翻折的性质,熟记性质定理并熟练运用是解题的关键.4、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.5、B【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.【详解】由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,∵∠C=90°,CD=1,∴CD=DE=1.∵AB=10,∴S△ABD=AB•DE=×10×1=2.故选B.【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.6、C【解析】
根据最简二次根式的定义对每个选项进行判断即可.【详解】解:A.,故原选项不是最简二次根式;B.,故原选项不是最简二次根式;C.是最简二次根式;D.=4,故原选项不是最简二次根式.故选C.【点睛】本题考点:最简二次根式.7、C【解析】
过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.【详解】如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2-BD2=AC2-CD2=AD2,∴52-BD2=72-(8-BD)2,解得:BD=,∴AD=,∴△ABC的面积=10,故选C.【点睛】本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.8、B【解析】
根据常量的定义判断即可,常量就是不变的量,不随自变量的变化而变化.【详解】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.【点睛】本题主要考查常量的定义,是函数的基本知识点,应当熟练掌握.9、B【解析】试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.考点:根的判别式;点的坐标.10、C【解析】
利用平移的性质得到AB∥A′B′,BC∥B′C′,则A′B′⊥BC,延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,根据平移的性质得到FB′=2,AE=2,易得四边形ABFE、四边形BEDG都为矩形,然后计算出DE和B′E后可得到阴影部分面积.【详解】解:∵长方形ABCD先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,
∴AB∥A′B′,BC∥B′C′,
∴A′B′⊥BC,
延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,
∴FB′=2,AE=2,
易得四边形ABFE、四边形BEDG都为矩形,
∴DE=AD-AE=6-2=4,B′E=EF-B′F=AB-B′F=4-2=2,
∴阴影部分面积=4×2=1.
故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二、填空题(每小题3分,共24分)11、矩形5cm【解析】试题解析:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形.∴AC=BD∵AC=5cm∴BD=5cm12、.【解析】
由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【点睛】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.13、1.1.【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【详解】解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.14、;(2)详见解析;(3)1【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.15、1【解析】
∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16、;【解析】
根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.【详解】根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得,即故答案为【点睛】本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.17、3【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.【详解】∵,∴m+n=3.18、0,2【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.【详解】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣20,系数化为2得,x<2.故其非负整数解为:0,2.【点睛】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.三、解答题(共66分)19、证明见解析1和2【解析】
(1)根据方程的系数结合根的判别式即可得出△=(m-3)2≥0,由此即可证出结论;(2)等腰三角形的腰长为1,将x=1代入原方程求出m值,将m的值代入原方程中解方程即可得出方程的解,再根据三角形的三边关系确定△ABC的三条边,结合三角形的周长即可得出结论.【详解】(1)证明:∵△=[﹣(m+1)]2﹣1×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,∴无论m取何值,这个方程总有实数根;(2)等腰三角形的腰长为1,将x=1代入原方程,得:16﹣1(m+1)+2(m﹣1)=0,解得:m=5,∴原方程为x2﹣6x+8=0,解得:x1=2,x2=1.组成三角形的三边长度为2、1、1;所以三角形另外两边长度为1和2.【点睛】本题考查了根的判别式,三角形三边关系,等腰三角形的性质以及解一元二次方程,⑴牢记当△≥0时,方程有实数根,⑵代入x=1求出m的值是解决本题的关键.20、(1);(2);(3)①1;②.【解析】
(1)根据面积的两种表达方式得到图3所表示的代数恒等式;(2)作边长为a+b的正方形即可得;(3)套用所得公式计算可得.【详解】解:(1)由图3知,等式为:,故答案为;(2)如图所示:
由图可得;(3)①原式;②.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.21、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.【解析】
(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;(1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;(3)根据反比例函数图象的增减性解答问题.【详解】解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),∴把点A的坐标代入解析式,得,解得,k=2.∴这个函数的解析式为:.(1)∵反比例函数解析式,∴2=xy.分别把点B、C的坐标代入,得(-1)×2=-2≠2,则点B不在该函数图象上;3×1=2,则点C在函数图象上.(3)∵k>0,∴当x<0时,y随x的增大而减小.∵当x=-3时,y=-1,当x=-1时,y=-2,∴当-3<x<-1时,-2<y<-1.22、(1)能,10;(2)或12,理由见解析.【解析】
(1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.(2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.【详解】解:(1)能,∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm。∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。∴当t=10时,AEFD是菱形。(2)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=。②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t=2×60-8t,解得:t=12。综上所述,当t=或12时,△DEF为直角三角形【点睛】本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.23、(1),,,;(2)见解析;(3)【解析】
(1)分别针对于直线AB.CD的解析式,令x=0和y=0,解方程即可得出结论;(2)先判断出AO=OD,OB=OC,得出△AOB≌△DOC(SAS)。进而得出∠OAB=∠ODC,再利用同角的余角相等判断出∠AOF=∠BOE,得出△AOF≌△DOE(ASA),即可得出结论;(3)先求出点G的坐标,设出点M、N的坐标,利用中点坐标公式建立方程组求解得出m,n,进而得出点M坐标,代入直线y=kx+k中,即可得出结论.【详解】解:(1)∵∴令x=0,则y=1.∴B(0,1)∵令y=0,则,∴x=-2,∴A(-2,0)∵令x=0,则y=2,∴D(0,2),∵令y=0,则-2x+2=0,∴x=1,∴C(1.0)(2)由(1)知,A(-2,0),B(0,1),C(1,0),D(0,2),∴OA=2,OB=1,OC=1,OD=2∴,又∵∠AOB=∠DOC∴∴∠OAB=∠ODC∵∴∠BOF+∠BOE=90°∵∠BOF+∠AOF=90°∴∴∴(3)∵∴必过轴上一定点分别作轴于,轴于∵,∴∴,设∴∴∴即,∴的解析式为∴【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,全等三角形的判定和性质,中点坐标公式,准确做出辅助线是解本题的关键.24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module3 Unit1 What are they doing?(说课稿)-2024-2025学年外研版(三起)英语四年级上册
- 7 我是班级值日生(说课稿)-2024-2025学年统编版道德与法治二年级上册
- Unit 3 Its a colourful world!Part B Let's learn(说课稿)-2024-2025学年外研版(三起)(2024)英语三年级上册
- 2023六年级数学上册 二 分数乘法第3课时 分数与整数相乘说课稿 苏教版
- 5《这些事我来做》(说课稿)-部编版道德与法治四年级上册
- Unit5 My clothes Part A Lets talk (说课稿)-2023-2024学年人教PEP版英语四年级下册001
- 《1 有余数的除法-第二课时》(说课稿)-2023-2024学年二年级下册数学苏教版001
- Unit 2 Improving Yourself Developing ideas Writing a reflection 说课稿-2024-2025学年高中英语外研版(2019)选择性必修第二册
- 2025无产权房屋买卖合同范本
- 4.花之歌教案 统编版语文六年级上册
- 2025长江航道工程局招聘101人历年高频重点提升(共500题)附带答案详解
- 2025年黑龙江哈尔滨市面向社会招聘社区工作者1598人历年高频重点提升(共500题)附带答案详解
- 执行总经理岗位职责
- 《妊娠期恶心呕吐及妊娠剧吐管理指南(2024年)》解读
- 《黑神话:悟空》跨文化传播策略与路径研究
- 《古希腊文明》课件
- 居家养老上门服务投标文件
- 长沙市公安局交通警察支队招聘普通雇员笔试真题2023
- 2025年高考语文作文满分范文6篇
- 零售业连锁加盟合同
- 2025高考语文复习之60篇古诗文原文+翻译+赏析+情景默写
评论
0/150
提交评论