版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州树人学校2024年八年级数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.观察图中的函数图象,则关于x的不等式ax-bx>c的解集为()A.x<2 B.x<1 C.x>2 D.x>12.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A.5 B.4 C.3 D.23.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A.a<1 B.a<﹣1 C.a>1 D.a>﹣14.小明在学完一次函数时发现,可以运用画一次函数图象的方法求二元一次方程组的解.小明在同一平面直角坐标系中作出相应的两个一次函数的图象如图所示.则小明所解的二元一次方程组是()A. B. C. D.5.某药品经过两次降价,每瓶零售价由元降为元。已知两次降价的百分率相同,每次降价的百分率为,根据题意列方程得()A. B.C. D.6.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形 B.平行四边形的对角线互相平分C.矩形的对角线相等 D.对角线相等的四边形是矩形7.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B. C. D.m>08.如图所示的四边形,与选项中的四边形一定相似的是()A. B.C. D.9.在▱ABCD中,已知∠A=60°,则∠C的度数是()A.30° B.60° C.120° D.60°或120°10.对于二次根式,以下说法不正确的是()A.它是一个无理数 B.它是一个正数 C.它是最简二次根式 D.它有最小值为3二、填空题(每小题3分,共24分)11.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.12.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.13.如图,在矩形ABCD中,AB=6,对角线AC、BD相交于点O,AE垂直平分BO于点E,则AD的长为_____.14.如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.15.计算:=______.16.因式分解:x2+6x=_____.17.如图,在Rt△ABC中,∠C=90°,若AB=17,则正方形ADEC和BCFG的面积的和为________.18.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____三、解答题(共66分)19.(10分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.(1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;(2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;(3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.20.(6分)如图,在中,,,,点为边上的一个动点,点从点出发,沿边向运动,当运动到点时停止,设点运动的时间为秒,点运动的速度为每秒1个单位长度.(1)当时,求的长;(2)求当为何值时,线段最短?21.(6分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。22.(8分)如图,△ABC与△AFD为等腰直角三角形,∠FAD=∠BAC=90°,点D在BC上,则:(1)求证:BF=DC.(2)若BD=AC,则求∠BFD的度数.23.(8分)解不等式(组),并将其解集分别表示在数轴上(1)10﹣4(x﹣3)≤2(x﹣1);(2).24.(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本。(1)请求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?25.(10分)计算:当时,求代数式的值26.(10分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax-bx>c的解集为x>1.故选:D.【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.2、B【解析】分析:利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;详解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12-x,GE=x+6,∵GE2=CG2+CE2,∴(x+6)2=(12-x)2+62,解得:x=1,∴BG=1.故选B.点睛:此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.3、B【解析】(a+1)x<a+1,
当a+1<0时x>1,
所以a+1<0,解得a<-1,
故选B.【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4、C【解析】
先利用待定系数求出两函数解析式,由于函数图象交点坐标为两函数解析式组成的方程组的解,则可判断所解的二元一次方程组为两解析式所组成的方程组.【详解】解:设过点(1,1)和(0,-1)的直线解析式为y=kx+b,
则,
解得,
所以直线解析式为y=2x-1;
设过点(1,1)和(0,2)的直线解析式为y=mx+n,
则,
解得,
所以直线解析式为y=-x+2,
所以所解的二元一次方程组为.
故选C.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.5、D【解析】
设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:设每次降价的百分率为x,
根据题意得:168(1-x)2=1.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、D【解析】试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:A.对角线垂直平分的四边形是菱形,所以A正确;B.平行四边形的对角线相互平分,所以B正确;C.矩形的对角线相等,所以C正确;D.对角线相等的平行四边形是矩形,所以D错误;考点:菱形、矩形的判定,平行四边形、矩形的性质.7、C【解析】
根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.【详解】∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选C.【点睛】本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.8、D【解析】
根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.【点睛】此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.9、B【解析】
由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.10、A【解析】
根据最简二次根式的定义:被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】是一个非负数,是最简二次根式,最小值是3,
当时x=0,是有理数,故A错误;故选A.【点睛】考查了最简二次根式,利用最简二次根式的性质是解题关键.二、填空题(每小题3分,共24分)11、1【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【详解】解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.12、【解析】分析:根据三角形中位线定理求出第二个三角形的周长、第三个三角形的周长,总结规律,得到答案.详解:根据三角形中位线定理得到第二个三角形三边长是△ABC的三边长的一半,即第二个三角形的周长为,则第三个三角形的周长为,∴第2018个三角形的周长为;故答案为:.点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13、6【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=6,得出BD=2OB=6,由勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=6,∴BD=2OB=12,∴故答案为:【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14、1【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.16、x(x+6)【解析】
根据提公因式法,可得答案.【详解】原式=x(6+x),故答案为:x(x+6).【点睛】本题考查了因式分解,利用提公因式法是解题关键.17、189【解析】【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=17,则AC1+BC1=189,故答案为:189.【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.18、()1.【解析】
首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【详解】∵四边形ABCD为正方形,
∴AB=BC=1,∠B=90°,
∴AC2=12+12,AC=;
同理可求:AE=()2,HE=()3…,
∴第n个正方形的边长an=()n-1,
∴第2016个正方形的边长为()1,
故答案为()1.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.三、解答题(共66分)19、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或【解析】
(1)根据题意求得点E的坐标,再代入,把代入得到,即可解答(2)先由折叠的性质得出,由平行线的性质得出,即四边形为菱形.(3)为顶点的四边形是平行四边形时,点坐标或或.【详解】解:(1)如图1中,,是由翻折得到,,在中,,,设,在中,,解得,,设直线的解析式为,把代入得到,直线的解析式为.(2)如图2中,四边形为菱形,理由:是由翻折得到,,.,,而.四边形为菱形.(3)以为顶点的四边形是平行四边形时,点坐标或或.【点睛】本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.20、(1)8;(2)t=.【解析】
(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质定理即可得到结论.【详解】(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∴AC10,当t=2时,AD=2,∴CD=8;(2)当BD⊥AC时,BD最短.∵BD⊥AC,∴∠ADB=∠ABC=90°.∵∠A=∠A,∴△ABC∽△ADB,∴,∴,∴AD,∴t,∴当t为时,线段BD最短.【点睛】本题考查了勾股定理,垂线段最短,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.21、(1)见解析;(2)【解析】
(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可【详解】证明:(1)在矩形ABCD中CD∥AB,CD=AB,∵EF∥AB,EF=AB∴CD//EF,CD=EF∴四边形CDEF是平行四边形,又∵DE=DC∴四边形CDEF是菱形(2)在矩形ABCD中,∠BAD=90°,AD=BC=3∴当四边形ABFE周长最小时,AE⊥BD此时;BD=,∠AED=90°由(1)可知四边形CDEF是平行四边形四边形CDEF的周长为故:当四边形ABFE周长最小时,四边形CDEF的周长为【点睛】本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.22、(1)见解析;(2)67.5°.【解析】
(1)先根据等腰直角三角形的性质得出AB=AC,AF=AD,∠FAD=∠BAC=90°,则有∠BAF=∠CAD,即可利用SAS证明△ABF≌△ACD,则结论可证;(2)先根据等腰直角三角形的性质和三角形内角和定理求出的度数,然后由△ABF≌△ACD得出∠ABF=∠ACD=45°,最后利用∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF即可求解.【详解】(1)∵△ABC与△AFD为等腰直角三角形∴AB=AC,AF=AD,∠FAD=∠BAC=90°,∴∠BAF=∠CAD,且AB=AC,AF=AD∴△ABF≌△ACD(SAS)∴BF=DC(2)∵△ABC与△AFD为等腰直角三角形∴∠ABC=∠ACB=∠ADF=45°∵AB=AC=BD∴∠BDA=∠BAD=67.5°∴∠BDF=22.5°∵△ABF≌△ACD,∴∠ABF=∠ACD=45°∴∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF=67.5°【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理,掌握等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理是解题的关键.23、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.【解析】
(1)去括号,移项,合并同类项,化系数为1即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】(1)10﹣1(x﹣3)≤2(x﹣1)10﹣1x+12≤2x﹣2,﹣6x≤﹣21,x≥1.解集在数轴上如图所示:(2)由①得到:x≥﹣1,由②得到:x<3,∴﹣1≤x<3,【点睛】本题考查不等式组的解法,数轴等知识,解题的关键是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024副食品保障供应合同
- 农产品采购合作协议书
- 社区物业管理服务合同
- 小额民间借款合同范本
- 建筑行业材料购销协议模板
- 2023年高考地理复习精题精练-区域发展对交通运输布局的影响(解析版)
- 2024年售房的合同范本
- 建筑工地物资租赁合同书
- 房产抵押担保协议参考
- 2024年劳务协议书样本
- 企业如何利用新媒体做好宣传工作课件
- 如何培养孩子的自信心课件
- 中医药膳学全套课件
- 颈脊髓损伤-汇总课件
- 齿轮故障诊断完美课课件
- 2023年中国盐业集团有限公司校园招聘笔试题库及答案解析
- 大班社会《特殊的车辆》课件
- 野生动物保护知识讲座课件
- 早教托育园招商加盟商业计划书
- 光色变奏-色彩基础知识与应用课件-高中美术人美版(2019)选修绘画
- 前列腺癌的放化疗护理
评论
0/150
提交评论