山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题含解析_第1页
山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题含解析_第2页
山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题含解析_第3页
山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题含解析_第4页
山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省兴县交楼申中学2024届八年级数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有()A.①②③④ B.②③ C.②③④ D.②④2.在中,斜边,则的值为()A.6 B.9 C.18 D.363.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定4.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=()度.A.270° B.300°C.360° D.400°6.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.7.如图,直线y=-x+2与x轴交于点A,则点A的坐标是()A.(2,0) B.(0,2) C.(1,1) D.(2,2)8.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2 B.3 C.5 D.69.下列图形中,不是轴对称图形的是()A.矩形 B.菱形 C.平行四边形 D.正方形10.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是()A.必然事件 B.不可能事件 C.确定事件 D.随机事件二、填空题(每小题3分,共24分)11.分解因式:______.12.函数自变量的取值范围是_________________.13.在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.14.计算:=_____;|﹣|=_____.15.计算=__________.16.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为_______.17.若ab<0,化简的结果是____.18.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为_____.三、解答题(共66分)19.(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=22.求BC边上的高及△ABC的面积.20.(6分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.21.(6分)(1)解方程:;(2)解不等式:2(x-6)+4≤3x-5,并将它的解集在数轴上表示出来.22.(8分)阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.阅读时间分组统计表组别阅读时间x(h)人数AaB100CbD140Ec请结合以上信息解答下列问题(1)求a,b,c的值;(2)补全图1所对应的统计图;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.23.(8分)已知:等腰三角形的一个角,求其余两角与的度数.24.(8分)如图,ΔABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30∘,∠B=45∘,25.(10分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/量)30租金/(元/辆)400280(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.(2)请给出最节省费用的租车方案.26.(10分)2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由参赛者推荐语读书心得读书讲座甲878595乙948888

参考答案一、选择题(每小题3分,共30分)1、C【解析】

利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△AFB≌△ADC,∴∠BAF=∠CAD,BF=CD,故②④正确;由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE故③正确;无法判断BE=CD,故①错误.故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.2、C【解析】

根据勾股定理即可求解.【详解】在Rt△ABC中,AB为斜边,∴==9∴=2=18故选C.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.3、B【解析】

根据三角形中位线定理计算即可【详解】∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.【点睛】此题考查三角形中位线定理,解题关键在于掌握运算法则4、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.5、C【解析】

根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,

∠1+∠2+∠3+∠4+∠5=360°,

故答案为:360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、A【解析】

一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.【详解】解:直线中,令.则.解得.∴.故选:A.【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).8、B【解析】

根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=7,由EF=DE-DF可得答案.【详解】∵AF⊥BF,∴∠AFB=90°,∵AB=8,D为AB中点,∴DF=AB=AD=BD=4,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴AE=EC,∴DE=BC=7,∴EF=DE−DF=3,【点睛】此题考查三角形中位线定理,直角三角形斜边上的中线,解题关键在于利用直角三角形斜边上中线的定理9、C【解析】

根据轴对称图形的定义即可判断.【详解】A.

矩形是轴对称图形,不符合题意;

B.

菱形是轴对称图形,不符合题意;

C.

平行四边形不是轴对称图形,符合题意;

D.

正方形是轴对称图形,不符合题意;

故选:C.【点睛】本题考查轴对称图形的定义,解题的关键是掌握轴对称图形的定义.10、D【解析】

根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于1.显然,向上一面的点数之和为10”是随机事件.

故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、【解析】

根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.【详解】,=,=,故答案为:.【点睛】本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.12、【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:2x+1>0,解得:.

故答案为:.【点睛】函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.13、1<x<2或x>2+.【解析】

先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.【详解】由题意可得抛物线:y=(x−2),对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=−(x−2);如图,由题意得:当y=1时,(x−2)=1,解得:x=2+,x=2−,∴C(2−,1),F(2+,1),当y=1时,−(x−2)=1,解得:x=3,x=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;故答案为1<x<2或x>2+.【点睛】此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.14、【解析】

根据二次根式的分母有理化和二次根式的性质分别计算可得.【详解】=,|-|==2,故答案为:,2.【点睛】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.15、【解析】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式==点睛:本题主要考查二次根式的加减,比较简单.16、(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17、【解析】的被开方数a2b>1,而a2>1,所以b>1.又因为ab<1,所以a、b异号,所以a<1,所以.18、3【解析】

过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.【详解】解:过P作PE⊥OB,

∵∠AOP=∠BOP,∠AOB=45°,

∴∠AOP=∠BOP=22.5°,

∵PC∥OA,

∴∠OPC=∠AOP=22.5°,

∴∠PCE=45°,

∴△PCE是等腰直角三角形,,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,

∴PD=PE=.【点睛】本题考查了角平分线的性质,平行线的性质,等腰直角三角形的判定和性质,求得∠PCE=45°是解题的关键.三、解答题(共66分)19、2,2+23.【解析】

先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=22得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【详解】∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=22,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD=AB2∴BC=BD+CD=23+2,∴S△ABC=12BC⋅AD=12(23+2)×2=2+2【点睛】此题考查勾股定理,解题关键在于求出BD的长.20、-3,-1.【解析】

首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.【详解】①×1得:1x-4y=1m③,②-③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:-4≤m≤-,则m=-3,-1.考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.21、(1)x=;(2)x≥-3.【解析】分析:(1)首先找出最简公分母,再去分母进而解方程得出答案;(2)首先去括号,进而解不等式得出答案.详解:(1)去分母得:x=3(x-3),解得:x=,检验:x=时,x(x-3)≠0,则x=是原方程的根;(2)2(x-6)+4≤3x-52x-12+4≤3x-5,解得:x≥-3,如图所示:.点睛:此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.22、(1)a=20,b=200,c=40;(2)详见解析;(3)估计全校课外阅读时间在20h以下的学生所占百分比为24%.【解析】

(1)根据D组的人数及占比可求出调查的总人数,再根据C,E组的占比求出对应的人数,再用总人数减去各组人数即可求出.(2)根据所求的数值即可补全统计图;(3)根据题意可知在20h以下(不含20h)的学生所占百分比为,故可求解.【详解】解:(1)由题意可知,调查的总人数为,∴,,则;(2)补全图形如下:(3)由(1)可知,答:估计全校课外阅读时间在20h以下的学生所占百分比为24%.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.23、见解析.【解析】

根据∠α的情况进行分类讨论求解即可.【详解】当时,由三角形内角和,是顶角,所以当时,①是顶角,所以②是底角,、或、【点睛】本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.24、(1)详见解析;(2)BG=5+5【解析】

(1)根据CD平分∠ACB,得到∠ACD=∠DCG,再根据EG垂直平分CD,得到DG=CG,DE=EC,从而得到∠EDC=∠DCG=∠ACD=∠GDC,故CE∥DG,DE∥GC,从而证明四边形DECG是平行四边形,再根据DE=EC证明四边形DGCE是菱形;(2)过点D作DH⊥BC,由(1)知CG=DG=10,DG∥EC,得到∠ACB=∠DGB=30∘,且DH⊥BC,得到HG=3DH=53,由∠B=45【详解】解:(1)证明:∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD,∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论