版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都嘉祥外国语学校2024年八年级数学第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1) B.图象经过一、二、三象限C.y随x的增大而增大 D.当x>时,y<02.如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是()A.﹣2 B.1 C.2 D.33.下列各式中从左到右的变形,是因式分解的是()A.a2b+ab2=ab(a+b) B.x2+x﹣5=(x﹣2)(x+3)+1C.x2+1=x(x+) D.(a+3)(a﹣3)=a2﹣94.若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+或x B.-或÷ C.+或÷ D.-或x5.如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A.x>2 B.x>0 C.x>1 D.x<16.如图,平行四边形ABCD中,对角线AC与BD交于O,AC=6,BD=8,AB=5,则△BOC的周长是()A.12 B.11 C.14 D.157.下列图案中是轴对称图形的是()A. B. C. D.8.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75° B.45° C.60° D.15°9.下列说法正确的是()A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C.“明天我市会下雨”是随机事件D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖10.如图,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是().A.6 B.5 C.4 D.3.11.已知一次函数的图象与轴交于点,且随自变量的增大而减小,则关于的不等式的解集是()A. B. C. D.12.如图,矩形沿折叠,使点落在边上的点处,如果,那么的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是______.14.如图,把一张长方形的纸沿对角线BD折叠后,顶点A落在A′处,已知∠CDA′=28°,则∠CBD=______________.15.点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°,点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是______.16.计算:=_________.17.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值__________.18.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.三、解答题(共78分)19.(8分)如图,在四边形中,,,,点是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;同时,点以每秒2个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.求当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.20.(8分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.(1)如图1,若k=1,求线段AB的长;(2)如图2,点C与点A关于y轴对称,作射线BC;①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;②y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围21.(8分)对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(1,﹣2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.22.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.求该公司投递快件总件数的月平均增长率;如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?23.(10分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.24.(10分)一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?25.(12分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.26.已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.如图,当点A旋转到时,请你直接写出AH与AB的数量关系;如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
参考答案一、选择题(每题4分,共48分)1、D【解析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.解:A、当x=1时,y=1.所以图象不过(1,-1),故错误;
B、∵-2<0,3>0,∴图象过一、二、四象限,故错误;
C、∵-2<0,∴y随x的增大而减小,故错误;
D、画出草图.
∵当x>时,图象在x轴下方,∴y<0,故正确.
故选D.“点睛”本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.2、C【解析】
把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.【详解】解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,
∴M(1,3),
设l2的解析式为y=ax,
则3=a,
解得a=3,
∴l2的解析式为y=3x,
∵l1,l2,l3能围成三角形,
∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),
∴k≠3,k≠-2,k≠1,
∴k的值能取的是2,
故选C.【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.3、A【解析】
根据因式分解的格式要求及提公因式法和公式法进行求解,并逐一判断即可得解.【详解】A.,故此选项正确;B.没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项错误;C.没把一个多项式转化成几个整式积的形式(含有分式),不是因式分解,故此选项错误;D.是整式的乘法,不是因式分解,故此选项错误;故选:A.【点睛】本题主要考查了因式分解的相关概念,熟练掌握因式分解的格式及公式法与提公因式法进行因式分解的方法是解决本题的关键.4、C【解析】
分别将运算代入,根据分式的运算法则即可求出答案.【详解】综上,在“口”中添加的运算符号为或故选:C.【点睛】本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5、D【解析】【分析】观察函数图象得到当x<1时,函数y=x+b的图象都在y=kx+4的图象下方,所以关于x的不等式x+b<kx+4的解集为x<1.【解答】当x<1时,x+b<kx+4,即不等式x+b<kx+4的解集为x<1,故选D.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、A【解析】
利用平行四边形的性质得出CO=AO=12AC=3,DO=OB=12【详解】∵AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=6,BD=8,∴CO=AO=12AC=3,DO=OB=12又∵AB=5,∴AB2=AO2+BO2,∴△ABO是直角三角形,∴∠AOB=∠BOC=90°,∴BC=BO2∴△BOC的周长是:3+4+5=12.故选:A.【点睛】此题考查平行四边形的性质,解题关键在于得到CO=3,OB=4.7、D【解析】
根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选:D.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【解析】
首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.【详解】根据题意△ABC是等边三角形可得B点旋转后的点为C旋转角为故选C.【点睛】本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.9、C【解析】解:A.若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;B.某蓝球运动员2次罚球,投中一个,这是一个随机事件,但不能断定他罚球命中的概率一定为50%,故本选项错误;C.明天我市会下雨是随机事件,故本选项正确;D.某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故该选项错误.故选C.10、D【解析】
分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=1,即G的移动路径长为1.故选D.【点睛】本题考查了等边三角形的性质,平行四边形的判定与性质,以及中位线的性质,确定出点G的运动轨迹是解答本题的关键.11、B【解析】
根据一次函数随自变量的增大而减小,再根据一次函数与不等式的关系即可求解.【详解】随自变量的增大而减小,当时,,即关于的不等式的解集是.故选:.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像.12、C【解析】
先由矩形的性质折叠的性质得出∠AFE=∠D=90°,从而得出∠CFE=60°,在利用直角三角形的性质即可.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,由折叠得,∠AFE=∠D=90°,∴∠BFA+∠CFE=90°,∴∠CFE=90°-∠BFA=60°,∵∠C=90°,∴∠CEF=90°-∠CFE=30°,故选C.【点睛】此题主要考查了矩形的性质,折叠的性质,直角三角形的性质,解本题的关键是求出∠CFE.二、填空题(每题4分,共24分)13、y=1x-1【解析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.考点:一次函数图象与几何变换.14、31°【解析】
根据折叠的性质可得:∠BDA=∠BDA'=(90°-28°),则利用平行线的性质可求∠CBD=∠BDA.【详解】解:由折叠性质可知:∠BDA=∠BDA'=(90°-28°)=31°又∵矩形ABCD中,AD∥BC∴∠CBD=∠BDA=31°故答案为:31°.【点睛】本题考查了折叠及矩形的性质,理解折叠中出现的相等的角是关键.15、.【解析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1,再求出MN的长即可求出答案.【详解】如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,连结MN,过点B作BE⊥MN,垂足为点E,∴ME=MN,在Rt△MBE中,,BM=∴ME=,∴MN=∴△MPN的周长最小值是+1.故答案为+1.【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.16、【解析】
先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为:【点睛】此题考查的是二次根式的性质和去绝对值.17、1【解析】
过点O作OG⊥AB,OH⊥BC,利用AAS证明△EOG≌△FOH,得到两个正方形重合部分的面积是正方形OGBH,由此得到答案.【详解】如图,过点O作OG⊥AB,OH⊥BC,则∠OGE=∠OHF=90°,∵四边形ABCD是正方形,∴OA=OB=OC,∠AOB=∠BOC=90°,∴OG=AB=BC=OH=1,∠GOH=90°,∵四边形A1B1C1O是正方形,∴∠A1OC1=90°,∴∠EOG=∠FOH,∴△EOG≌△FOH,∵∠ABC=∠OGB=∠OHB=90°,∴四边形OGBH是矩形,∵OG=OH,∴四边形OGBH是正方形,∴两个正方形重叠部分的面积==1,故答案为:1.【点睛】此题考查正方形的性质,全等三角形的性质,正方形的判定定理,熟记各定理并熟练运用解题是关键.18、.【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.【详解】解:∵△CDE恰为等边三角形,∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,∴△AEB’为等边三角形,由四边形ABCD为平行四边形,且∠B=60°,∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,∴B’,A,B三点在同一条直线上,∴AC是对折线,∴AC垂直且平分BB’,∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,∴面积为.【点睛】本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.三、解答题(共78分)19、t为2或秒【解析】
由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.【详解】解:由题意可知,AP=t,CQ=2t,CE=BC=8∵AD∥BC,∴当PD=EQ时,以点P,Q,E,D为顶点的四边形是平行四边形.①当2t<8,即t<4时,点Q在C,E之间,如图甲.此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,由6-t=8-2t,得t=2;②当8<2t<16且t<6,即4<t<6时,点Q在B,E之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8,得t=∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.20、(1);(2);(3)四边形ABCD为菱形,-2≤k≤2且k≠1.【解析】
(1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;(2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.【详解】解:(1)由题意知,将k=1代入y=kx-3,即直线AB的解析式为:y=x-3,令x=1,求出B点坐标为(1,-3),故OB=3,令y=1,求出A点坐标为(3,1),故OA=3,在Rt△AOB中,由勾股定理有:,故答案为:;(2)①当k=3时,直线AB的解析式为:y=3x-3,令y=1,则x=1,求出点A的坐标为(1,1),令x=1,则y=-3,求出点B的坐标为(1,-3),∵点C与点A关于y轴对称,故点C(-1,1),设直线BC的解析式为:,代入B、C两点坐标:,解得,故直线BC的解析式为:,∴以射线BA和射线BC所组成的图形为函数图像的函数解析式为:,故答案为:;②四边形ABCD为菱形,理由如下:∵点B(1,-3),点D(1,3),故OB=OD,∵点C与点A关于y轴对称,∴OA=OC,由对角线互相平分的四边形是平行四边形知,四边形ABCD为平行四边形,又∵AC⊥BD,故四边形ABCD为菱形;令y=kx-3中y=1,解得,∴A(,1),则点C(,1),则AC=,∴菱形ABCD的面积为,解得:且,故答案为:且.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、面积的计算等,综合性强,难度适中,熟练掌握一次函数的图像和性质及菱形的性质和判定是解决本题的关键.21、(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2.【解析】
(1)根据题意把T(1,1)=2.5,T(1,﹣2)=1代入T(x,y)=即可求出a,b的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.【详解】(1)根据题意得:,①+②得:3a=9,即a=3,把a=3代入①得:b=2,故a,b的值分别为3和2;(2)根据题意得:,由①得:m≤,由②得:m>p﹣3,∴不等式组的解集为p﹣3<m≤,∵不等式组恰好有2个整数解,即m=0,1,∴﹣1≤p﹣3<0,解得≤p<2,即实数P的取值范围是≤p<2.【点睛】此题主要考查不等式组的解,解题的关键是根据题意列出不等式并根据题意解出.22、该公司投递快件总件数的月平均增长率为该公司现有的16名快递投递员不能完成今年6月份的快递投递任务【解析】
设该公司投递快件总件数的月平均增长率为x,根据该公司今年三月份与五月份完成投递的快件总件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;根据6月份的快件总件数月份的快递总件数增长率,可求出6月份的快件总件数,利用6月份可完成投递快件总件数每人每月可投递快件件数人数可求出6月份可完成投递快件总件数,二者比较后即可得出结论.【详解】解:设该公司投递快件总件数的月平均增长率为x,根据题意得:,解得:,舍去.答:该公司投递快件总件数的月平均增长率为.月份快递总件数为:万件,万件,,该公司现有的16名快递投递员不能完成今年6月份的快递投递任务.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程;根据数量关系,列式计算.23、证明见解析【解析】
(1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到EO=BA,然后依据菱形的性质可得到AB=CD.【详解】(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD,∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O,∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024副食品保障供应合同
- 农产品采购合作协议书
- 社区物业管理服务合同
- 小额民间借款合同范本
- 建筑行业材料购销协议模板
- 2023年高考地理复习精题精练-区域发展对交通运输布局的影响(解析版)
- 2024年售房的合同范本
- 建筑工地物资租赁合同书
- 房产抵押担保协议参考
- 2024年劳务协议书样本
- 企业如何利用新媒体做好宣传工作课件
- 如何培养孩子的自信心课件
- 中医药膳学全套课件
- 颈脊髓损伤-汇总课件
- 齿轮故障诊断完美课课件
- 2023年中国盐业集团有限公司校园招聘笔试题库及答案解析
- 大班社会《特殊的车辆》课件
- 野生动物保护知识讲座课件
- 早教托育园招商加盟商业计划书
- 光色变奏-色彩基础知识与应用课件-高中美术人美版(2019)选修绘画
- 前列腺癌的放化疗护理
评论
0/150
提交评论