浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题含解析_第1页
浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题含解析_第2页
浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题含解析_第3页
浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题含解析_第4页
浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省奉化市溪口中学2024年八年级下册数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点P(a,1)不在第一象限,则点Q(0,﹣a)在()A.x轴正半轴上 B.x轴负半轴上C.y轴正半轴或原点上 D.y轴负半轴上2.在四边形中,对角线和交于点,下列条件能判定这个四边形是菱形的是()A., B.,,C.,, D.,,3.下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查长江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式4.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上5.上复习课时李老师叫小聪举出一些分式的例子,他举出了:,,其中正确的个数为().A.2 B.3 C.4 D.56.8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A. B. C. D.7.下列式子从左到右的变形中,属于因式分解的是()A.102-5=5(2-1) B.(+y)=+C.2-4+4=(-4)+4 D.2-16+3=(-4)(+4)+38.要使分式有意义,则x的取值满足的条件是()A. B. C. D.9.已知点在第一象限,则下列关系式正确的是()A. B. C. D.10.完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.对北斗导航卫星上的零部件进行检查D.考察一批炮弹的杀伤半径.二、填空题(每小题3分,共24分)11.已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.12.如果a-b=2,ab=3,那么a2b-ab2=_________;13.小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.14.数据﹣2,﹣1,0,3,5的方差是.15.如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.16.如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.17.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________18.如图,将直角三角形纸片置于平面直角坐标系中,已知点,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图位置,第二次旋转至图位置,···,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为__________.三、解答题(共66分)19.(10分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?20.(6分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.21.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长22.(8分)未成年人思想道德建设越来越受到社会的关注.某青少年研究机构随机调查了某校100名学生寒假花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了如下的频数分布表(部分空格未填).某校100名学生寒假花零花钱数量的频数分布表:(1)完成该频数分布表;(2)画出频数分布直方图.(3)研究认为应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200学生中约多少名学生提出该项建议?23.(8分)计算:(1)

;(2)24.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.25.(10分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;(2)如图1,当∠ABC=90°时,若AC=42,BE=32,求线段EF(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.26.(10分)某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)求本次抽查的学生共有______人;(2)将条形统计图和扇形统计图补充完整;(3)扇形统计图中“”所在扇形圆心角的度数为______;(4)估计全校“”等级的学生有______人

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据题意得出a的取值范围,进而得出答案.【详解】解:∵点P(a,1)不在第一象限,∴a≤0,则﹣a≥0,故点Q(0,﹣a)在:y轴正半轴上或原点.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2、D【解析】

根据菱形的判定方法逐一进行判断即可.【详解】A.由,只能判定四边形是平行四边形,不一定是菱形,故该选项错误;B.由,,只能判定四边形是矩形,不一定是菱形,故该选项错误;C.由,,可判断四边形可能是等腰梯形,不一定是菱形,故该选项错误;D.由,能判定四边形是菱形,故该选项正确;故选:D.【点睛】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.3、C【解析】

利用抽样调查,全面普查适用范围直接判断即可【详解】A.要了解一批节能灯的使用寿命,应采用抽样调查方式,故A错B.调查你所在班级同学的身高,应采用全面普查方式,故B错C.环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C对D.调查全市中学生每天的就寝时间,应采用抽样调查方式,故D错【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键4、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.5、B【解析】

根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:在,中,是分式,只有3个,

故选:B.【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.6、D【解析】先求这10个人的总成绩8x+2×84=8x+168,再除以10可求得平均值为:.故选D.7、A【解析】

因式分解是将一个多项式转化成几个代数式乘积的形式,据此定义进行选择即可.【详解】A.符合定义且运算正确,所以是因式分解,符合题意;B.是单项式乘多项式的运算,不是因式分解,不符合题意;C.因为,所以C不符合题意;D.不符合定义,不是转换成几个代数式乘积的形式,不符合题意;综上所以答案选A.【点睛】本题考查的是因式分解的定义,熟知因式分解是将式子转化成几个代数式乘积的形式是解题的关键.8、B【解析】

根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.【详解】由分式有意义的条件可得x+2≠0,解得x≠-2.故答案选B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.9、B【解析】

首先根据点所在象限确定横、纵坐标的符号,进一步可得关于m的不等式组,再解所得的不等式组即可求得正确的结果.【详解】解:因为第一象限内的点的坐标特点是(+,+),所以5-m>0,m+3>0,解得.故选B.【点睛】本题考查了平面直角坐标系各象限点的坐标特点和解一元一次不等式组,解决问题的关键是熟记各象限内点的坐标符号特点并列出不等式组求解,具体来说:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).10、D【解析】

调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、人数不多,容易调查,宜采用全面调查;B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合全面调查;C、对北斗导航卫星上的零部件进行检查,因为调查的对象比较重要,应采用全面调查;D、考察一批炮弹的杀伤半径适合抽样调查;故选D.【点睛】本题主要考查了全面调查和抽样调查,解题时根据调查的对象的范围的大小作出判断,当范围较小时常常采用全面调查.二、填空题(每小题3分,共24分)11、6cm【解析】

根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.【详解】解::如图,D,E,F分别是△ABC的三边的中点,

则DE=AC,DF=BC,EF=AB.

∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.【点睛】本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.12、6【解析】

首先将a2b-ab2提取公因式,在代入计算即可.【详解】解:代入a-b=2,ab=3则原式=故答案为6.【点睛】本题主要考查因式分解的计算,关键在于提取公因式,这是基本知识点,应当熟练掌握.13、两组对边分别相等的四边形是平行四边形.【解析】根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.故答案是:两组对边分别相等的四边形是平行四边形.14、.【解析】

试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为.15、【解析】

由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.【详解】由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,∵△ABO是等边三角形,∴OM=AO=×4=2,∴BN=OM=2,在Rt△OBM中,BM===2,∴ON=BM=2,∵C,∴CN=ON+OC=2+=3,在Rt△BNC中,BC=,即PC+AP的最小值为,故答案为.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.16、40°【解析】

根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【详解】∵四边形是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°-70°-70°=40°.故答案是:40°.【点睛】考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.17、a>-1【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,

当a+1>0时,即a>-1时,y随x的增大而增大.

故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18、【解析】

根据题意,由2019÷3=673可得,直角三角形纸片旋转2019次后图形应与图③相同,利用勾股定理与规律即可求得答案.【详解】解:由题意可知AO=3,BO=4,则AB=,∵2019÷3=673,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为:673×(3+4+5)=8076.故答案为8076.【点睛】本题主要考查勾股定理,图形规律题,解此题的关键在于根据题意准确找到图形的变化规律,利用勾股定理求得边长进行解答即可.三、解答题(共66分)19、(1)5元(2)0.5元/千克;y=x+5(0≤x≤30);(3)他一共带了45千克土豆.【解析】

(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【详解】(1)根据图示可得:农民自带的零钱是5元.(2)(20-5)÷30=0.5(元/千克)∴y=x+5(0≤x≤30)答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.20、BC边上的高AD=.【解析】

作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.【详解】作AD⊥BC于D,由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,解得,CD=1,则BC边上的高AD=.【点睛】考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21、(1)详见解析;(2)详见解析;(3)【解析】

(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x+(2x)=3,解得x=,所以BC=,AB=BC=,然后在Rt△ABD中利用勾股定理计算AD的长.【详解】(1)证明:∵∠ACB=90°,AC=BC,∴△ACB为等腰直角三角形,∴∠CAF=∠ACG=45°,∵CG平分∠ACB,∴∠BCG=45°,在△BCG和△CFA中,∴△BCG≌△CFA,∴BG=CF;(2)证明:连结AG,∵CG为等腰直角三角形ACB的顶角的平分线,∴CG垂直平分AB,∴BG=AG,∴∠GBA=∠GAB,∵AD⊥AB,∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,∴∠D=∠GAD,∴AG=DG,∴BG=DG,∵CG⊥AB,DA⊥AB,∴CG∥AD,∴∠DAE=∠GCE,∵E为AC边的中点,∴AE=CE,在△ADE和△CGE中,∴△ADE≌△CGE,∴DE=GE,∴DG=2DE,∴BG=2DE,∵△BCG≌△CFA,∴CF=BG,∴CF=2DE;(3)∵DE=1,∴BG=2,GE=1,即BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中,x+(2x)=3,解得x=,∴BC=,∴AB=BC=,在Rt△ABD中,∵BD=4,AB=,∴AD=.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线22、(1)见解析;(2)见解析;(3)540名.【解析】

(1)用100乘以频率求出0.5-50.5范围的频数,根据频率之和为1,求出100.5-150.5范围的频率和频数,最后根据每个范围中两整数部分的平均数得出组中值,填表即可;(2)依据频数分布直方图的画法作图;(3)求出150元以上的频率之和,再乘以1200即可得到结果.【详解】解:(1)100×0.1=10,,100-(10+20+30+10+5)=25,,,如图:(2)如图所示:(3)1200×(0.3+0.1+0.05)=540(名)答:估计应对该校1200学生中约540名学生提出该项建议.【点睛】本题考查了读频数(频率)分布直方图的能力、频数分布直方图的画法和用样本估计总体的知识,弄懂题意是解题的关键.23、(1)10;(2)【解析】

根据二次根式的混合运算法则进行计算,即可解答.【详解】(1)原式=;(2)==;【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.24、【解析】

(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.【详解】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.25、(1)CE+CF=12AB;(2)342;(3)CF−CE=【解析】

(1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,即可推出CE+CF=OC,再证明OC=12AB(2)先证明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根据CE2+CF2=EF2即可解决问题.(3)结论:CF-CE=2O`C,过点O`作O`H⊥AC交CF于H,只要证明△FO`H≌△EO`C,推出FH=CE,再根据等腰直角三角形性质即可解决问题.【详解】(1)结论CE+CF=12理由:如图1中,连接EF,在CO上截取CN=CF.∵∠EOF+∠ECF=180°,∴O、E.C.F四点共圆,∵∠ABC=60°,四边形ABCD是菱形,∴∠BCD=180°−∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF,∠OFE=∠OCE,∴∠OEF=∠OFE=60°,∴△OEF是等边三角形,∴OF=FE,∵CN=CF,∠FCN=60°,∴△CFN是等边三角形,∴FN=FC,∠OFE=∠CFN,∴∠OFN=∠EFC,在△OFN和△EFC中,FO=FE∠OFN=∠EFCFN=FC∴△OFN≌△EFC,∴ON=EC,∴CE+CF=CN+ON=OC,∵四边形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论