版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市临泉县2024年数学八年级下册期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列各曲线中不能表示y是x函数的是()A. B. C. D.2.下列由左到右的变形,属于因式分解的是()A. B.C. D.3.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶水平面上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.8米 B.11.75米C.12.3米 D.12.25米4.已知a<b,下列不等关系式中正确的是()A.a+3>b+3 B.3a>3b C.﹣a<﹣b D.﹣>﹣5.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:得分(分60708090100人数(人8121073则得分的中位数和众数分别为A.75,70 B.75,80 C.80,70 D.80,806.已知:如果二次根式是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.287.下列因式分解错误的是()A.a2-5a=aC.a2-4a+4=8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个 B.2个 C.3个 D.4个9.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A. B.C. D.10.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.2 B.3 C.4 D.811.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是()A.平均数 B.众数 C.中位数 D.方差12.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设(
)A.至少有一个内角是直角 B.至少有两个内角是直角C.至多有一个内角是直角 D.至多有两个内角是直角二、填空题(每题4分,共24分)13.在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).14.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.15.一个三角形的三边分别是2、1、3,这个三角形的面积是_____.16.将二元二次方程化为两个一次方程为______.17.如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.18.将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.三、解答题(共78分)19.(8分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.20.(8分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.(1)如图1,求证:四边形是菱形;(2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形21.(8分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.22.(10分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.23.(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.24.(10分)如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.25.(12分)如图,四边形ABCD中,∠A=∠ABC=90∘,AD=3,BC=5,E是边CD的中点,连接BE并延长与AD的延长线相交于点(1)求证:四边形BDFC是平行四边形;(2)若BD=BC,求四边形BDFC的面积.26.探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=_____,=______;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.【点睛】本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.2、D【解析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫做因式分解,逐一判断即可.【详解】A.是整式的乘法,不是因式分解,故本选项不符合题意;B.中,结果不是整式乘积的形式,故本选项不符合题意;C.中,等式的左侧不是多项式,故本选项不符合题意;D.是因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解的判断,掌握因式分解的定义是解决此题的关键.3、A【解析】
在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.【详解】根据题意可构造相似三角形模型如图,其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.4∴GF=0.4AG又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,∴GF=4.6∴AG=11.5∴AB=AG+GB=11.8,即树高为11.8米.【点睛】此题考查相似三角形的应用,解题关键在于画出图形.4、D【解析】
根据不等式的性质逐一判断即可.【详解】A:不等式两边都加3,不等号的方向不变,原变形错误,故此选项不符合题意;B:不等式两边都乘以3,不等号的方向不变,原变形错误,故此选项不符合题意;C:不等式两边都乘﹣1,不等号的方向改变,原变形错误,故此选项不符合题意;D不等式两边都除以﹣2,不等号的方向改变,原变形正确,故此选项符合题意;故选:D.【点睛】本题主要考查了不等式的性质,熟记不等式在两边都乘除负数时,不等式符号需要改变方向是解题关键.5、A【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是(分),得70分的人数最多,有12人,故众数为70(分),故选.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6、C【解析】
先将化为最简二次根式,然后根据是整数可得出n的最小值.【详解】=2,又∵是整数,∴n的最小值为1.故选C.【点睛】此题考查了二次根式的知识,解答本题的关键是将化为最简二次根式,难度一般.7、B【解析】
依次对各选项进行因式分解,再进行判断.【详解】A.选项:a2B.选项:a2-4=(a+2)(a-2)C.选项:a2D.选项:a2故选:B.【点睛】考查了提取公因式法以及公式法分解因式等知识,熟练利用公式分解因式是解题关键.8、A【解析】
由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.【详解】由图象可知A、B两城市之间的距离为300km,故①正确;甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选A.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.9、A【解析】根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.故选A.10、C【解析】
直接利用线段垂直平分线的性质得出AD=CD,进而结合已知角得出DC,BC的长,进而利用勾股定理得出答案.【详解】连接DC,在Rt△BCA中,∵DE为AC的垂直平分线,∴AD=CD,∴∠A=∠DCA=30°,∴∠BDC=60°,在Rt△CBD中,BD=2,,解得:DC=4,BC=2,在Rt△CBA中,BC=2,AC=2BC=4故选C.【点睛】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC的长是解题关键.11、D【解析】
依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为,原数据的3,4,4,5的中位数为4,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.12、B【解析】
本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.二、填空题(每题4分,共24分)13、1【解析】
要求可能性的大小,只需求出各自所占的比例大小即可.【详解】解:1号袋子摸到白球的可能性=0;2号袋子摸到白球的可能性=;3号袋子摸到白球的可能性=;1号个袋子摸到白球的可能性=,所以摸到白球的可能性最大的是1.【点睛】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.14、a>1且a≠3【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【点睛】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.15、2【解析】
首先根据勾股定理逆定理可判定此三角形是直角三角形,然后再计算面积即可.【详解】解:∵(2)2+12=3=(3)2,∴这个三角形是直角三角形,∴面积为:12×1×2=2故答案为:22【点睛】考查了二次根式的应用以及勾股定理逆定理,关键是正确判断出三角形的形状.16、和【解析】
二元二次方程的中间项,根据十字相乘法,分解即可.【详解】解:,,∴,.故答案为:和.【点睛】本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.17、1【解析】
由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.【详解】解:连结,与交于点,四边形是平行四边形,,四边形是菱形,,,.,在中,,.故答案为:1.【点睛】本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.18、【解析】
先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【详解】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.∴矩形的短边与长边的比为1:,故答案为:.【点睛】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.三、解答题(共78分)19、m=-1【解析】
根据一次函数的定义得到方程和不等式,再进行求解即可.【详解】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.20、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.【解析】
(1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
(2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.【详解】(1)证明:∵MG∥AD,NF∥AB,
∴四边形AMEN是平行四边形,
∵四边形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB−BM=AD−DN,
∴AM=AN,
∴四边形AMEN是菱形;
(2)解:∵四边形AMEN是菱形,∴ME=NE,∴S△AEM=S△AEN,如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,∴∠MHB=∠NKD=90°∵四边形ABCD是菱形,∴∠B=∠D,∵BM=DN,∴△MHB≌△NKD(AAS),∴MH=NK∴S四边形MBFE=S四边形DNEG,∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.【点睛】此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.21、这样定价不合理,理由见解析【解析】
根据加权平均数的概念即可解题.【详解】解:这样定价不合理.(元/).答:该什锦糖果合理的单价为18.7元/.【点睛】本题考查了加权平均数的实际计算,属于简单题,熟悉加权平均数的概念是解题关键.22、(1)见解析;(2)四边形ADCE是菱形,见解析.【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形【点睛】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.23、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,四边形PQCD为等腰梯形(4)存在t,t的值为103【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=DC∴BC=BE+EC=18cm.(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125故当t=125(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ=CDPF=DE∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12,解得:t=245即当t=245(4)△DQC是等腰三角形时,分三种情况讨论:①当QC=DC时,即3t=10,∴t=103②当DQ=DC时,3t∴t=4;③当QD=QC时,3t×6∴t=259故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或25考点:四边形综合题.24、(1);(2),1,.【解析】
(1)根据矩形的性质,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年餐厅窗口承包经营投资合作协议3篇
- 2025年旅游推广宣传品采购合同模板3篇
- 二零二五版高端商务车买卖合作协议3篇
- 2025年物流运输与供应链金融合作协议书3篇
- 2025年新型土石方资源综合利用合同范本3篇
- 2025年增资协议保障责任
- 二零二五年房地产项目物业管理劳务派遣协议3篇
- 2025年企业独资股东增资协议
- 2025年培训费用结算协议样本
- 2025年培训服务质量检查协议
- 2025年工程合作协议书
- 2025年山东省东营市东营区融媒体中心招聘全媒体采编播专业技术人员10人历年高频重点提升(共500题)附带答案详解
- 2025年宜宾人才限公司招聘高频重点提升(共500题)附带答案详解
- KAT1-2023井下探放水技术规范
- 驾驶证学法减分(学法免分)题库及答案200题完整版
- 竣工验收程序流程图
- 清华经管工商管理硕士研究生培养计划
- 口腔科诊断证明书模板
- 管沟挖槽土方计算公式
- 国网浙江省电力公司住宅工程配电设计技术规定
- 烟花爆竹零售应急预案
评论
0/150
提交评论